1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2025-01-04 14:30:35 +00:00

improvement to rulegen3

This commit is contained in:
Zeno Rogue 2022-07-17 12:54:35 +02:00
parent b76bddb47b
commit e7818829e2
2 changed files with 264 additions and 3 deletions

View File

@ -2465,6 +2465,7 @@ auto hooks = addHook(hooks_configfile, 100, [] {
param_i(max_shortcut_length, "max_shortcut_length"); param_i(max_shortcut_length, "max_shortcut_length");
param_i(rulegen_timeout, "rulegen_timeout"); param_i(rulegen_timeout, "rulegen_timeout");
param_i(first_restart_on, "first_restart_on"); param_i(first_restart_on, "first_restart_on");
param_i(max_ignore_level, "max_ignore_level");
}); });
EX void parse_treestate(arb::arbi_tiling& c, exp_parser& ep) { EX void parse_treestate(arb::arbi_tiling& c, exp_parser& ep) {

View File

@ -193,6 +193,167 @@ EX void cleanup3() {
int last_qroad; int last_qroad;
vector<vector<pair<int,int>>> possible_parents;
struct vcell {
int tid;
vector<int> adj;
void become(int _tid) { tid = _tid; adj.clear(); adj.resize(isize(treestates[tid].rules), -1); }
};
struct vstate {
bool need_cycle;
vector<pair<int, int>> movestack;
vector<vcell> vcells;
int current_pos;
int current_root;
vector<pair<int, int>> rpath;
};
map<int, vector<int>> rev_roadsign_id;
int get_abs_rule(int tid, int j) {
auto& ts = treestates[tid];
int j1 = gmod(j - ts.giver.spin, isize(ts.rules));
return ts.rules[j1];
}
void build(vstate& vs, vector<tcell*>& places, int where, int where_last, tcell *g) {
places[where] = g;
// twalker wh = g;
// println(hlog, "[", where, "<-", where_last, "] expected treestate = ", vs.vcells[where].tid, " actual treestate = ", get_treestate_id(wh));
auto& c = vs.vcells[where];
for(int i=0; i<isize(c.adj); i++)
if(c.adj[i] != -1 && c.adj[i] != where_last) {
indenter ind(2);
int rule = get_abs_rule(vs.vcells[where].tid, i);
auto g1 = g->cmove(i);
twalker wh1 = g1;
auto ts = get_treestate_id(wh1).second;
if(ts != rule) {
important.push_back(g);
important.push_back(g1);
continue;
}
build(vs, places, c.adj[i], where, g1);
}
}
void print_rules();
EX int max_ignore_level = 30;
int ignore_level;
int check_debug = 0;
void error_found(vstate& vs) {
println(hlog, "current root = ", vs.current_root);
int id = 0;
for(auto& v: vs.vcells) {
println(hlog, "vcells[", id++, "]: tid=", v.tid, " adj = ", v.adj);
}
vector<tcell*> places(isize(vs.vcells), nullptr);
tcell *g = treestates[vs.vcells[vs.current_root].tid].giver.at;
int q = isize(important);
build(vs, places, vs.current_root, -1, g);
if(q == 0) for(auto& p: places) if(!p) throw rulegen_failure("bad tree");
// for(auto p: places) important.push_back(p);
// println(hlog, "added to important: ", places);
if(!vs.movestack.empty()) {
auto p = places[vs.current_pos];
if(p) {
important.push_back(p);
auto p1 = p->cmove(vs.movestack.back().first);
important.push_back(p1);
println(hlog, "last: ", p, " -> ", p1);
}
}
println(hlog, "added to important ", isize(important)-q, " places");
throw rulegen_retry("3D error subtree found");
}
void check(vstate& vs) {
if(check_debug >= 3) println(hlog, "vcells=", isize(vs.vcells), " pos=", vs.current_pos, " stack=", vs.movestack, " rpath=", vs.rpath);
indenter ind(check_debug >= 3 ? 2 : 0);
if(vs.movestack.empty()) {
if(vs.need_cycle && vs.current_pos != 0) {
println(hlog, "rpath: ", vs.rpath, " does not cycle correctly");
error_found(vs);
}
if(check_debug >= 2) println(hlog, "rpath: ", vs.rpath, " successful");
return;
}
auto p = vs.movestack.back();
auto& c = vs.vcells[vs.current_pos];
int ctid = c.tid;
int rule = get_abs_rule(ctid, p.first);
/* connection already exists */
if(c.adj[p.first] != -1) {
dynamicval<int> d(vs.current_pos, c.adj[p.first]);
int dif = (rule == DIR_PARENT) ? -1 : 1;
if(p.second != dif && p.second != MYSTERY)
error_found(vs);
vs.movestack.pop_back();
check(vs);
vs.movestack.push_back(p);
}
/* parent connection */
else if(rule == DIR_PARENT) {
if(isize(vs.rpath) >= ignore_level) {
if(check_debug >= 1) println(hlog, "rpath: ", vs.rpath, " ignored for ", vs.movestack);
return;
}
if(check_debug >= 3) println(hlog, "parent connection");
dynamicval<int> r(vs.current_root, isize(vs.vcells));
vs.vcells[vs.current_pos].adj[p.first] = vs.current_root;
for(auto pp: possible_parents[ctid]) {
if(check_debug >= 3) println(hlog, tie(vs.current_pos, p.first), " is a child of ", pp);
vs.rpath.emplace_back(pp);
vs.vcells.emplace_back();
vs.vcells.back().become(pp.first);
vs.vcells.back().adj[pp.second] = vs.current_pos;
check(vs);
vs.vcells.pop_back();
vs.rpath.pop_back();
}
vs.vcells[vs.current_pos].adj[p.first] = -1;
}
/* child connection */
else if(rule >= 0) {
if(check_debug >= 3) println(hlog, "child connection");
vs.vcells[vs.current_pos].adj[p.first] = isize(vs.vcells);
vs.vcells.emplace_back();
vs.vcells.back().become(rule);
vs.vcells.back().adj[treestates[rule].giver.spin] = vs.current_pos;
check(vs);
vs.vcells.pop_back();
vs.vcells[vs.current_pos].adj[p.first] = -1;
}
/* side connection */
else {
auto& v = rev_roadsign_id[rule];
if(v.back() != p.second + 1 && p.second != MYSTERY)
error_found(vs);
int siz = isize(vs.movestack);
vs.movestack.pop_back();
if(check_debug >= 3) println(hlog, "side connection: ", v);
for(int i=v.size()-2; i>=0; i-=2) vs.movestack.emplace_back(v[i], i == 0 ? -1 : v[i+1] - v[i-1]);
check(vs);
vs.movestack.resize(siz);
vs.movestack.back() = p;
}
}
EX void check_road_shortcuts() { EX void check_road_shortcuts() {
println(hlog, "road shortcuts = ", qroad, " treestates = ", isize(treestates), " roadsigns = ", next_roadsign_id); println(hlog, "road shortcuts = ", qroad, " treestates = ", isize(treestates), " roadsigns = ", next_roadsign_id);
if(qroad > last_qroad) { if(qroad > last_qroad) {
@ -204,8 +365,107 @@ EX void check_road_shortcuts() {
next_roadsign_id = -100; next_roadsign_id = -100;
throw rulegen_retry("new road shortcuts"); throw rulegen_retry("new road shortcuts");
} }
println(hlog, "checking validity, important = ", important);
possible_parents.clear();
int N = isize(treestates);
possible_parents.resize(N);
for(int i=0; i<N; i++) {
auto& ts = treestates[i];
for(int j=0; j<isize(ts.rules); j++) if(ts.rules[j] >= 0)
possible_parents[ts.rules[j]].emplace_back(i, gmod(j + ts.giver.spin, isize(ts.rules)));
} }
rev_roadsign_id.clear();
for(auto& rs: roadsign_id) rev_roadsign_id[rs.second] = rs.first;
vstate vs;
build_cycle_data();
for(ignore_level=1; ignore_level <= max_ignore_level; ignore_level++) {
println(hlog, "test ignore_level ", ignore_level);
vs.need_cycle = false;
for(int i=0; i<N; i++) {
for(int j=0; j<isize(treestates[i].rules); j++) {
int r = get_abs_rule(i, j);
if(r < 0 && r != DIR_PARENT) {
vs.vcells.clear();
vs.vcells.resize(1);
vs.vcells[0].become(i);
vs.current_pos = vs.current_root = 0;
vs.movestack = { {j, MYSTERY} };
if(check_debug >= 1) println(hlog, "checking ", tie(i, j));
indenter ind(2);
check(vs);
}
}
}
vs.need_cycle = true;
for(int i=0; i<N; i++) {
int id = treestates[i].giver.at->id;
for(auto &cd: cycle_data[id]) {
vs.vcells.clear();
vs.vcells.resize(1);
vs.vcells[0].become(i);
vs.current_pos = vs.current_root = 0;
vs.movestack.clear();
for(auto v: cd) vs.movestack.emplace_back(v, MYSTERY);
reverse(vs.movestack.begin(), vs.movestack.end());
if(check_debug >= 1) println(hlog, "checking ", tie(i, id, cd));
indenter ind(2);
check(vs);
}
}
}
}
EX vector<vector<vector<int>>> cycle_data;
EX void build_cycle_data() {
cycle_data.clear();
cycle_data.resize(number_of_types());
for(int t=0; t<number_of_types(); t++) {
cell *start = tcell_to_cell[t_origin[t].at];
auto& sh0 = currentmap->get_cellshape(start);
for(int i=0; i<start->type; i++) {
auto& f = sh0.faces[i];
for(int j=0; j<isize(f); j++) {
hyperpoint v1 = kleinize(sh0.from_cellcenter * sh0.faces[i][j]);
hyperpoint v2 = kleinize(sh0.from_cellcenter * sh0.faces[i][(j+1) % isize(f)]);
vector<int> path = {i};
transmatrix T = currentmap->adj(start, i);
cell *at = start->cmove(i);
cell *last = start;
while(at != start) {
auto &sh1 = currentmap->get_cellshape(at);
int dir = -1;
for(int d=0; d<at->type; d++) if(at->move(d) != last) {
int ok = 0;
for(auto rv: sh1.faces[d]) {
hyperpoint v = kleinize(T * sh1.from_cellcenter * rv);
if(sqhypot_d(3, v-v1) < 1e-6) ok |= 1;
if(sqhypot_d(3, v-v2) < 1e-6) ok |= 2;
}
if(ok == 3) dir = d;
}
if(dir == -1) throw hr_exception("cannot cycle");
path.push_back(dir);
T = T * currentmap->adj(at, dir);
last = at;
at = at->cmove(dir);
}
cycle_data[t].push_back(std::move(path));
}
}
}
println(hlog, "cycle data = ", cycle_data);
}
using classdata = pair<vector<int>, int>;
vector<classdata> nclassify;
vector<int> representative;
void genhoneycomb(string fname) { void genhoneycomb(string fname) {
if(WDIM != 3) throw hr_exception("genhoneycomb not in honeycomb"); if(WDIM != 3) throw hr_exception("genhoneycomb not in honeycomb");
@ -218,8 +478,8 @@ void genhoneycomb(string fname) {
for(auto& rs: roadsign_id) rev_roadsign_id[rs.second] = rs.first; for(auto& rs: roadsign_id) rev_roadsign_id[rs.second] = rs.first;
int N = isize(treestates); int N = isize(treestates);
using classdata = pair<vector<int>, int>; nclassify.clear();
vector<classdata> nclassify(N); nclassify.resize(N);
for(int i=0; i<N; i++) nclassify[i] = {{0}, i}; for(int i=0; i<N; i++) nclassify[i] = {{0}, i};
int numclass = 1; int numclass = 1;
@ -247,7 +507,7 @@ void genhoneycomb(string fname) {
if(numclass == newclass) break; if(numclass == newclass) break;
numclass = newclass; numclass = newclass;
} }
vector<int> representative(numclass); representative.resize(numclass);
for(int i=0; i<isize(treestates); i++) representative[nclassify[i].first[0]] = i; for(int i=0; i<isize(treestates); i++) representative[nclassify[i].first[0]] = i;
println(hlog, "Minimized rules (", numclass, " states):"); println(hlog, "Minimized rules (", numclass, " states):");