mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2025-01-12 02:10:34 +00:00
more work on spherical native geometry
This commit is contained in:
parent
863f2f9696
commit
e4020a78d0
113
rug.cpp
113
rug.cpp
@ -175,17 +175,30 @@ hyperpoint hyperboloid_to_azeq(hyperpoint h) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
struct normalizer {
|
||||||
|
|
||||||
|
transmatrix M, Mi;
|
||||||
|
|
||||||
|
dynamicval<eGeometry> gw;
|
||||||
|
|
||||||
|
normalizer (hyperpoint h1, hyperpoint h2) : gw(geometry, gwhere == gElliptic ? gSphere : gwhere) {
|
||||||
|
M = orthonormalize(h1, h2);
|
||||||
|
Mi = inverse(M);
|
||||||
|
}
|
||||||
|
|
||||||
|
hyperpoint operator() (hyperpoint h) { return azeq_to_hyperboloid(Mi*h); }
|
||||||
|
hyperpoint operator[] (hyperpoint h) { return M*hyperboloid_to_azeq(h); }
|
||||||
|
};
|
||||||
|
|
||||||
void push_point(hyperpoint& h, int coord, ld val) {
|
void push_point(hyperpoint& h, int coord, ld val) {
|
||||||
if(fast_euclidean && gwhere == gEuclid)
|
if(fast_euclidean && gwhere == gEuclid)
|
||||||
h[coord] += val;
|
h[coord] += val;
|
||||||
else if(!val) return;
|
else if(!val) return;
|
||||||
else {
|
else {
|
||||||
// if(zero3(h)) { h[0] = 1e-9; h[1] = 1e-10; h[2] = 1e-11; }
|
// if(zero3(h)) { h[0] = 1e-9; h[1] = 1e-10; h[2] = 1e-11; }
|
||||||
USING_NATIVE_GEOMETRY;
|
normalizer n(hpxyz(coord==0,coord==1,coord==2), h);
|
||||||
transmatrix M = orthonormalize(hpxyz(coord==0,coord==1,coord==2), h);
|
hyperpoint f = n(h);
|
||||||
transmatrix Mi = inverse(M);
|
h = n[xpush(val) * f];
|
||||||
hyperpoint f = azeq_to_hyperboloid(Mi * h);
|
|
||||||
h = M * hyperboloid_to_azeq(xpush(val) * f);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -483,11 +496,9 @@ void verify() {
|
|||||||
auto m2 = e.target;
|
auto m2 = e.target;
|
||||||
ld l = e.len;
|
ld l = e.len;
|
||||||
|
|
||||||
USING_NATIVE_GEOMETRY;
|
normalizer n(m->flat, m2->flat);
|
||||||
transmatrix M = orthonormalize(m->flat, m2->flat);
|
hyperpoint h1 = n(m->flat);
|
||||||
transmatrix Mi = inverse(M);
|
hyperpoint h2 = n(m2->flat);
|
||||||
hyperpoint h1 = azeq_to_hyperboloid(Mi * m->flat);
|
|
||||||
hyperpoint h2 = azeq_to_hyperboloid(Mi * m2->flat);
|
|
||||||
ld l0 = hdist(h1, h2);
|
ld l0 = hdist(h1, h2);
|
||||||
ratios.push_back(l0 / l);
|
ratios.push_back(l0 / l);
|
||||||
}
|
}
|
||||||
@ -577,11 +588,9 @@ bool force(rugpoint& m1, rugpoint& m2, double rd, double d1=1, double d2=1) {
|
|||||||
// double rd = hdist(m1.h, m2.h) * xd;
|
// double rd = hdist(m1.h, m2.h) * xd;
|
||||||
// if(rd > rdz +1e-6 || rd< rdz-1e-6) printf("%lf %lf\n", rd, rdz);
|
// if(rd > rdz +1e-6 || rd< rdz-1e-6) printf("%lf %lf\n", rd, rdz);
|
||||||
using namespace hyperpoint_vec;
|
using namespace hyperpoint_vec;
|
||||||
USING_NATIVE_GEOMETRY;
|
normalizer n(m1.flat, m2.flat);
|
||||||
transmatrix M = orthonormalize(m1.flat, m2.flat);
|
hyperpoint f1 = n(m1.flat);
|
||||||
transmatrix Mi = inverse(M);
|
hyperpoint f2 = n(m2.flat);
|
||||||
hyperpoint f1 = azeq_to_hyperboloid(Mi * m1.flat);
|
|
||||||
hyperpoint f2 = azeq_to_hyperboloid(Mi * m2.flat);
|
|
||||||
|
|
||||||
ld t = hdist(f1, f2);
|
ld t = hdist(f1, f2);
|
||||||
current_total_error += (t-rd) * (t-rd);
|
current_total_error += (t-rd) * (t-rd);
|
||||||
@ -616,19 +625,23 @@ bool force(rugpoint& m1, rugpoint& m2, double rd, double d1=1, double d2=1) {
|
|||||||
f1 = iT1 * xpush(forcev) * C0;
|
f1 = iT1 * xpush(forcev) * C0;
|
||||||
f2 = iT1 * xpush(t-forcev) * C0;
|
f2 = iT1 * xpush(t-forcev) * C0;
|
||||||
|
|
||||||
m1.flat = M * hyperboloid_to_azeq(f1);
|
m1.flat = n[f1];
|
||||||
m2.flat = M * hyperboloid_to_azeq(f2);
|
m2.flat = n[f2];
|
||||||
|
|
||||||
if(nonzero && d2>0) enqueue(&m2);
|
if(nonzero && d2>0) enqueue(&m2);
|
||||||
return nonzero;
|
return nonzero;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
vector<pair<ld, rugpoint*> > preset_points;
|
||||||
|
|
||||||
void preset(rugpoint *m) {
|
void preset(rugpoint *m) {
|
||||||
int q = 0;
|
int q = 0;
|
||||||
hyperpoint h;
|
hyperpoint h;
|
||||||
for(int i=0; i<3; i++) h[i] = 0;
|
for(int i=0; i<3; i++) h[i] = 0;
|
||||||
using namespace hyperpoint_vec;
|
using namespace hyperpoint_vec;
|
||||||
|
|
||||||
|
preset_points.clear();
|
||||||
|
|
||||||
for(int j=0; j<size(m->edges); j++)
|
for(int j=0; j<size(m->edges); j++)
|
||||||
for(int k=0; k<j; k++) {
|
for(int k=0; k<j; k++) {
|
||||||
rugpoint *a = m->edges[j].target;
|
rugpoint *a = m->edges[j].target;
|
||||||
@ -664,6 +677,7 @@ void preset(rugpoint *m) {
|
|||||||
|
|
||||||
for(int i=0; i<3; i++) h[i] += res[i];
|
for(int i=0; i<3; i++) h[i] += res[i];
|
||||||
|
|
||||||
|
preset_points.emplace_back(hypot(blen * (ah+ch), blen * (az-cz)), c);
|
||||||
q++;
|
q++;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -671,6 +685,53 @@ void preset(rugpoint *m) {
|
|||||||
if(q>0) for(int i=0; i<3; i++) m->flat[i] = h[i]/q;
|
if(q>0) for(int i=0; i<3; i++) m->flat[i] = h[i]/q;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
ld sse(hyperpoint h) {
|
||||||
|
ld sse = 0;
|
||||||
|
for(auto& p: preset_points) {
|
||||||
|
ld l = p.first;
|
||||||
|
normalizer n(h, p.second->flat);
|
||||||
|
hyperpoint h1 = n(h);
|
||||||
|
hyperpoint h2 = n(p.second->flat);
|
||||||
|
ld l0 = hdist(h1, h2);
|
||||||
|
sse += (l0-l) * (l0-l);
|
||||||
|
}
|
||||||
|
|
||||||
|
return sse;
|
||||||
|
}
|
||||||
|
|
||||||
|
void optimize(rugpoint *m, bool do_preset) {
|
||||||
|
|
||||||
|
if(do_preset) {
|
||||||
|
preset(m);
|
||||||
|
int ed0 = size(preset_points);
|
||||||
|
for(auto& e: m->edges) if(e.target->valid)
|
||||||
|
preset_points.emplace_back(e.len, e.target);
|
||||||
|
if(gwhere >= gSphere) {
|
||||||
|
ld cur = sse(m->flat);
|
||||||
|
for(int it=0; it<500; it++) {
|
||||||
|
ld ex = exp(-it/60);
|
||||||
|
again:
|
||||||
|
hyperpoint last = m->flat;
|
||||||
|
switch(it%6) {
|
||||||
|
case 0: m->flat[0] += ex; break;
|
||||||
|
case 1: m->flat[0] -= ex; break;
|
||||||
|
case 2: m->flat[1] += ex; break;
|
||||||
|
case 3: m->flat[1] -= ex; break;
|
||||||
|
case 4: m->flat[2] += ex; break;
|
||||||
|
case 5: m->flat[2] -= ex; break;
|
||||||
|
}
|
||||||
|
ld now = sse(m->flat);
|
||||||
|
if(now < cur) { cur = now; ex *= 1.2; goto again; }
|
||||||
|
else m->flat = last;
|
||||||
|
}
|
||||||
|
printf("edges = [%d] %d sse = %lf\n",ed0, size(preset_points), cur);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for(int it=0; it<50; it++)
|
||||||
|
for(int j=0; j<size(m->edges); j++)
|
||||||
|
force(*m, *m->edges[j].target, m->edges[j].len, 1, 0);
|
||||||
|
}
|
||||||
|
|
||||||
int divides = 0;
|
int divides = 0;
|
||||||
bool stop = false;
|
bool stop = false;
|
||||||
|
|
||||||
@ -710,12 +771,10 @@ void subdivide() {
|
|||||||
rugpoint *mm = addRugpoint(mid(m->h, m2->h), (m->dist+m2->dist)/2);
|
rugpoint *mm = addRugpoint(mid(m->h, m2->h), (m->dist+m2->dist)/2);
|
||||||
halves[{m, m2}] = mm;
|
halves[{m, m2}] = mm;
|
||||||
using namespace hyperpoint_vec;
|
using namespace hyperpoint_vec;
|
||||||
USING_NATIVE_GEOMETRY;
|
normalizer n(m->flat, m2->flat);
|
||||||
transmatrix M = orthonormalize(m->flat, m2->flat);
|
hyperpoint h1 = n(m->flat);
|
||||||
transmatrix Mi = inverse(M);
|
hyperpoint h2 = n(m2->flat);
|
||||||
hyperpoint h1 = azeq_to_hyperboloid(Mi * m->flat);
|
mm->flat = n[mid(h1, h2)];
|
||||||
hyperpoint h2 = azeq_to_hyperboloid(Mi * m2->flat);
|
|
||||||
mm->flat = M * hyperboloid_to_azeq(mid(h1, h2));
|
|
||||||
mm->valid = true; qvalid++;
|
mm->valid = true; qvalid++;
|
||||||
mm->inqueue = false; enqueue(mm);
|
mm->inqueue = false; enqueue(mm);
|
||||||
}
|
}
|
||||||
@ -728,6 +787,7 @@ void subdivide() {
|
|||||||
calcLengths();
|
calcLengths();
|
||||||
|
|
||||||
printf("result (%d,%d)\n", size(points), size(triangles));
|
printf("result (%d,%d)\n", size(points), size(triangles));
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void addNewPoints() {
|
void addNewPoints() {
|
||||||
@ -747,12 +807,8 @@ void addNewPoints() {
|
|||||||
m.valid = wasvalid || sphere || hdist0(m.h) <= dist;
|
m.valid = wasvalid || sphere || hdist0(m.h) <= dist;
|
||||||
if(m.valid && !wasvalid) {
|
if(m.valid && !wasvalid) {
|
||||||
qvalid++;
|
qvalid++;
|
||||||
if(i > 7) preset(&m);
|
|
||||||
|
|
||||||
if(good_shape) ;
|
if(!good_shape) optimize(&m, i > 7);
|
||||||
else for(int it=0; it<50; it++)
|
|
||||||
for(int j=0; j<size(m.edges); j++)
|
|
||||||
force(m, *m.edges[j].target, m.edges[j].len, 1, 0);
|
|
||||||
|
|
||||||
enqueue(&m);
|
enqueue(&m);
|
||||||
}
|
}
|
||||||
@ -782,6 +838,7 @@ void physics() {
|
|||||||
|
|
||||||
if(moved) enqueue(m);
|
if(moved) enqueue(m);
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// drawing the Rug
|
// drawing the Rug
|
||||||
|
Loading…
Reference in New Issue
Block a user