mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2024-11-23 13:07:16 +00:00
optimized inverses
This commit is contained in:
parent
cea3da31fc
commit
e26f8f5a5b
@ -625,7 +625,7 @@ struct hrmap_archimedean : hrmap {
|
||||
dynamicval<hrmap*> cm(currentmap, current_altmap);
|
||||
U = T;
|
||||
current_altmap->virtualRebase(alt, T);
|
||||
U = U * inverse(T);
|
||||
U = U * iso_inverse(T);
|
||||
}
|
||||
|
||||
if(euclid) {
|
||||
@ -725,7 +725,7 @@ struct hrmap_archimedean : hrmap {
|
||||
h1 = h1->move(0);
|
||||
}
|
||||
else {
|
||||
where = inverse(cof.adjcell_matrix(h2, 0)) * where;
|
||||
where = iso_inverse(cof.adjcell_matrix(h2, 0)) * where;
|
||||
h2 = h2->move(0);
|
||||
}
|
||||
}
|
||||
|
@ -762,7 +762,7 @@ EX namespace bt {
|
||||
t[0] = parabolic3(horohex_scale, 0) * xpush(-l) * cspin(1, 2, M_PI/2);
|
||||
t[1] = cspin(1, 2, 2*M_PI/3) * t[0];
|
||||
t[2] = cspin(1, 2, 4*M_PI/3) * t[0];
|
||||
auto it = inverse(t[0]);
|
||||
auto it = iso_inverse(t[0]);
|
||||
|
||||
t[5] = it * t[1] * t[1];
|
||||
t[6] = it * t[5];
|
||||
@ -782,7 +782,7 @@ EX namespace bt {
|
||||
use_direct >>= 1;
|
||||
}
|
||||
for(int i=0; i<S7; i++) if(use_direct_for(i))
|
||||
inverse_tmatrix[i] = inverse(direct_tmatrix[i]);
|
||||
inverse_tmatrix[i] = iso_inverse(direct_tmatrix[i]);
|
||||
}
|
||||
|
||||
#if MAXMDIM == 4
|
||||
|
@ -331,9 +331,9 @@ EX void full_rotate_camera(int dir, ld val) {
|
||||
if(rug::rug_control() && lshiftclick) {
|
||||
hyperpoint h;
|
||||
if(nonisotropic) {
|
||||
transmatrix T2 = eupush( tC0(inverse(View)) );
|
||||
transmatrix T2 = eupush( tC0(view_inverse(View)) );
|
||||
transmatrix nlp = View * T2;
|
||||
auto rV = inverse(nlp) * View;
|
||||
auto rV = ortho_inverse(nlp) * View;
|
||||
h = nlp * inverse_exp(shiftless(tC0(rV)));
|
||||
}
|
||||
else h = inverse_exp(shiftless(tC0(View)));
|
||||
|
@ -1278,10 +1278,10 @@ void draw_stretch(dqi_poly *p) {
|
||||
npoly.V = shiftless(Id);
|
||||
npoly.flags &= ~(POLY_INVERSE | POLY_FORCE_INVERTED);
|
||||
|
||||
transmatrix T2 = stretch::translate( tC0(inverse(View)) );
|
||||
transmatrix T2 = stretch::translate( tC0(iso_inverse(View)) );
|
||||
transmatrix U = View * T2;
|
||||
|
||||
transmatrix iUV = inverse(U) * p->V.T;
|
||||
transmatrix iUV = iso_inverse(U) * p->V.T;
|
||||
|
||||
vector<hyperpoint> hs;
|
||||
vector<hyperpoint> ths;
|
||||
|
@ -577,7 +577,7 @@ void geometry_information::prepare_basics() {
|
||||
for(int d=0; d<S7; d++)
|
||||
hexmove[d] = spin(hexshift-d * ALPHA) * xpush(-crossf)* spin(M_PI);
|
||||
|
||||
for(int d=0; d<S7; d++) invhexmove[d] = inverse(hexmove[d]);
|
||||
for(int d=0; d<S7; d++) invhexmove[d] = iso_inverse(hexmove[d]);
|
||||
|
||||
hexvdist = hdist(xpush0(hexf), xspinpush0(ALPHA/2, hcrossf));
|
||||
|
||||
@ -951,7 +951,7 @@ EX void switch_always3() {
|
||||
#endif
|
||||
if(dual::split(switch_fpp)) return;
|
||||
check_cgi(); cgi.require_basics();
|
||||
View = inverse(models::rotmatrix()) * View;
|
||||
View = iso_inverse(models::rotmatrix()) * View;
|
||||
if(!vid.always3) {
|
||||
vid.always3 = true;
|
||||
apply_always3();
|
||||
|
@ -69,7 +69,7 @@ EX transmatrix master_relative(cell *c, bool get_inverse IS(false)) {
|
||||
else {
|
||||
auto li = gp::get_local_info(c);
|
||||
transmatrix T = spin(master_to_c7_angle()) * cgi.gpdata->Tf[li.last_dir][li.relative.first&31][li.relative.second&31][gp::fixg6(li.total_dir)];
|
||||
if(get_inverse) T = inverse(T);
|
||||
if(get_inverse) T = iso_inverse(T);
|
||||
return T;
|
||||
}
|
||||
}
|
||||
|
32
graph.cpp
32
graph.cpp
@ -2315,7 +2315,7 @@ EX bool applyAnimation(cell *c, shiftmatrix& V, double& footphase, int layer) {
|
||||
|
||||
if(sl2) {
|
||||
a.wherenow = slr::translate(tC0(a.wherenow));
|
||||
hyperpoint h = tC0(inverse(a.wherenow));
|
||||
hyperpoint h = tC0(iso_inverse(a.wherenow));
|
||||
hyperpoint ie = slr::get_inverse_exp(shiftless(h));
|
||||
auto R = hypot_d(3, ie);
|
||||
aspd *= (1+R+(shmup::on?1:0));
|
||||
@ -2346,9 +2346,9 @@ EX bool applyAnimation(cell *c, shiftmatrix& V, double& footphase, int layer) {
|
||||
else {
|
||||
hyperpoint wnow;
|
||||
if(a.attacking == 1)
|
||||
wnow = tC0(inverse(a.wherenow) * a.attackat);
|
||||
wnow = tC0(z_inverse(a.wherenow) * a.attackat);
|
||||
else
|
||||
wnow = tC0(inverse(a.wherenow));
|
||||
wnow = tC0(z_inverse(a.wherenow));
|
||||
|
||||
if(prod) {
|
||||
auto d = product_decompose(wnow);
|
||||
@ -2778,7 +2778,7 @@ EX bool drawMonster(const shiftmatrix& Vparam, int ct, cell *c, color_t col, col
|
||||
}
|
||||
else if(NONSTDVAR) {
|
||||
transmatrix T = currentmap->adj(c, c->mondir);
|
||||
Vb = Vb * T * rspintox(tC0(inverse(T))) * xpush(cgi.tentacle_length);
|
||||
Vb = Vb * T * rspintox(tC0(iso_inverse(T))) * xpush(cgi.tentacle_length);
|
||||
}
|
||||
else {
|
||||
Vb = Vb * ddspin(c, c->mondir, M_PI);
|
||||
@ -3174,7 +3174,7 @@ void draw_movement_arrows(cell *c, const transmatrix& V, int df) {
|
||||
transmatrix Centered = rgpushxto0(unshift(tC0(cwtV)));
|
||||
int sd = md.subdir;
|
||||
|
||||
transmatrix T = inverse(Centered) * rgpushxto0(Centered * tC0(V)) * rspintox(Centered*tC0(V)) * spin(-sd * M_PI/S7) * xpush(0.2);
|
||||
transmatrix T = iso_inverse(Centered) * rgpushxto0(Centered * tC0(V)) * rspintox(Centered*tC0(V)) * spin(-sd * M_PI/S7) * xpush(0.2);
|
||||
|
||||
if(vid.axes >= 5)
|
||||
queuestr(shiftless(T), keysize, s0 + key, col >> 8, 1);
|
||||
@ -3477,7 +3477,7 @@ EX void pushdown(cell *c, int& q, const shiftmatrix &V, double down, bool rezoom
|
||||
// xyscale = xyscale + (zscale-xyscale) * (1+sin(ticks / 1000.0)) / 2;
|
||||
|
||||
ptd.V.T = xyzscale( V.T, xyscale*zscale, zscale)
|
||||
* inverse(V.T) * unshift(ptd.V, V.shift);
|
||||
* z_inverse(V.T) * unshift(ptd.V, V.shift);
|
||||
|
||||
if(!repriority) ;
|
||||
else if(nlev < -vid.lake_bottom-1e-3) {
|
||||
@ -3692,7 +3692,7 @@ void make_clipping_planes() {
|
||||
hyperpoint sx = point3(y1 * z2 - y2 * z1, z1 * x2 - z2 * x1, x1 * y2 - x2 * y1);
|
||||
sx /= hypot_d(3, sx);
|
||||
sx[3] = 0;
|
||||
if(nisot::local_perspective_used()) sx = inverse(NLP) * sx;
|
||||
if(nisot::local_perspective_used()) sx = ortho_inverse(NLP) * sx;
|
||||
clipping_planes.push_back(sx);
|
||||
};
|
||||
ld tx = current_display->tanfov;
|
||||
@ -4461,7 +4461,7 @@ EX transmatrix actual_view_transform;
|
||||
EX ld wall_radar(cell *c, transmatrix T, transmatrix LPe, ld max) {
|
||||
if(!in_perspective() || !vid.use_wall_radar) return max;
|
||||
transmatrix ori;
|
||||
if(prod) ori = inverse(LPe);
|
||||
if(prod) ori = ortho_inverse(LPe);
|
||||
ld step = max / 20;
|
||||
ld fixed_yshift = 0;
|
||||
for(int i=0; i<20; i++) {
|
||||
@ -4487,30 +4487,30 @@ EX void make_actual_view() {
|
||||
if(GDIM == 3) {
|
||||
ld max = WDIM == 2 ? vid.camera : vid.yshift;
|
||||
if(max) {
|
||||
transmatrix Start = inverse(actual_view_transform * View);
|
||||
transmatrix Start = view_inverse(actual_view_transform * View);
|
||||
ld d = wall_radar(centerover, Start, NLP, max);
|
||||
actual_view_transform = get_shift_view_of(ztangent(d), actual_view_transform * View) * inverse(View);
|
||||
actual_view_transform = get_shift_view_of(ztangent(d), actual_view_transform * View) * view_inverse(View);
|
||||
}
|
||||
camera_level = asin_auto(tC0(inverse(actual_view_transform * View))[2]);
|
||||
camera_level = asin_auto(tC0(view_inverse(actual_view_transform * View))[2]);
|
||||
}
|
||||
if(nonisotropic) {
|
||||
transmatrix T = actual_view_transform * View;
|
||||
transmatrix T2 = eupush( tC0(inverse(T)) );
|
||||
transmatrix T2 = eupush( tC0(view_inverse(T)) );
|
||||
NLP = T * T2;
|
||||
actual_view_transform = inverse(NLP) * actual_view_transform;
|
||||
actual_view_transform = ortho_inverse(NLP) * actual_view_transform;
|
||||
}
|
||||
#endif
|
||||
#if MAXMDIM >= 4
|
||||
if(GDIM == 3 && WDIM == 2) {
|
||||
transmatrix T = actual_view_transform * View;
|
||||
transmatrix U = inverse(T);
|
||||
transmatrix U = view_inverse(T);
|
||||
|
||||
if(T[0][2])
|
||||
T = spin(-atan2(T[0][2], T[1][2])) * T;
|
||||
if(T[1][2] && T[2][2])
|
||||
T = cspin(1, 2, -atan2(T[1][2], T[2][2])) * T;
|
||||
|
||||
ld z = -asin_auto(tC0(inverse(T)) [2]);
|
||||
ld z = -asin_auto(tC0(view_inverse(T)) [2]);
|
||||
T = zpush(-z) * T;
|
||||
|
||||
radar_transform = T * U;
|
||||
@ -5297,7 +5297,7 @@ EX void animateAttack(const movei& m, int layer) {
|
||||
bool newanim = !animations[layer].count(m.s);
|
||||
animation& a = animations[layer][m.s];
|
||||
a.attacking = 1;
|
||||
a.attackat = rspintox(tC0(inverse(T))) * xpush(hdist0(T*C0) / 3);
|
||||
a.attackat = rspintox(tC0(iso_inverse(T))) * xpush(hdist0(T*C0) / 3);
|
||||
if(newanim) a.wherenow = Id, a.ltick = ticks, a.footphase = 0;
|
||||
}
|
||||
|
||||
|
@ -567,10 +567,10 @@ EX transmatrix eupush(ld x, ld y) {
|
||||
return T;
|
||||
}
|
||||
|
||||
EX transmatrix eupush(hyperpoint h) {
|
||||
if(nonisotropic) return nisot::translate(h);
|
||||
EX transmatrix eupush(hyperpoint h, ld co IS(1)) {
|
||||
if(nonisotropic) return nisot::translate(h, co);
|
||||
transmatrix T = Id;
|
||||
for(int i=0; i<GDIM; i++) T[i][LDIM] = h[i];
|
||||
for(int i=0; i<GDIM; i++) T[i][LDIM] = h[i] * co;
|
||||
return T;
|
||||
}
|
||||
|
||||
@ -795,11 +795,8 @@ EX transmatrix rpushxto0(const hyperpoint& H) {
|
||||
}
|
||||
|
||||
EX transmatrix ggpushxto0(const hyperpoint& H, ld co) {
|
||||
if(translatable) {
|
||||
if(nonisotropic)
|
||||
return co > 0 ? eupush(H) : inverse(eupush(H));
|
||||
return eupush(co * H);
|
||||
}
|
||||
if(translatable)
|
||||
return eupush(H, co);
|
||||
if(prod) {
|
||||
auto d = product_decompose(H);
|
||||
return mscale(PIU(ggpushxto0(d.second, co)), d.first * co);
|
||||
@ -924,7 +921,7 @@ void inverse_error(const transmatrix& T) {
|
||||
println(hlog, "Warning: inverting a singular matrix: ", T);
|
||||
}
|
||||
|
||||
/** inverse */
|
||||
/** inverse of a 3x3 matrix */
|
||||
EX transmatrix inverse3(const transmatrix& T) {
|
||||
ld d = det(T);
|
||||
transmatrix T2;
|
||||
@ -939,6 +936,7 @@ EX transmatrix inverse3(const transmatrix& T) {
|
||||
return T2;
|
||||
}
|
||||
|
||||
/** \brief inverse of a general matrix */
|
||||
EX transmatrix inverse(const transmatrix& T) {
|
||||
if(MDIM == 3)
|
||||
return inverse3(T);
|
||||
@ -978,6 +976,59 @@ EX transmatrix inverse(const transmatrix& T) {
|
||||
}
|
||||
}
|
||||
|
||||
/** \brief inverse of an orthogonal matrix, i.e., transposition */
|
||||
EX transmatrix ortho_inverse(transmatrix T) {
|
||||
for(int i=1; i<MDIM; i++)
|
||||
for(int j=0; j<i; j++)
|
||||
swap(T[i][j], T[j][i]);
|
||||
return T;
|
||||
}
|
||||
|
||||
/** \brief inverse of an orthogonal matrix in Minkowski space */
|
||||
EX transmatrix pseudo_ortho_inverse(transmatrix T) {
|
||||
for(int i=1; i<MDIM; i++)
|
||||
for(int j=0; j<i; j++)
|
||||
swap(T[i][j], T[j][i]);
|
||||
for(int i=0; i<MDIM-1; i++)
|
||||
T[i][MDIM-1] = -T[i][MDIM-1],
|
||||
T[MDIM-1][i] = -T[MDIM-1][i];
|
||||
return T;
|
||||
}
|
||||
|
||||
/** \brief inverse of an isometry -- in most geometries this can be done more efficiently than using inverse */
|
||||
EX transmatrix iso_inverse(const transmatrix& T) {
|
||||
if(hyperbolic)
|
||||
return pseudo_ortho_inverse(T);
|
||||
if(sphere)
|
||||
return ortho_inverse(T);
|
||||
if(euclid && !(cgflags & qAFFINE)) {
|
||||
transmatrix U = Id;
|
||||
for(int i=0; i<MDIM-1; i++)
|
||||
for(int j=0; j<MDIM-1; j++)
|
||||
U[i][j] = T[j][i];
|
||||
hyperpoint h = U * tC0(T);
|
||||
for(int i=0; i<MDIM-1; i++)
|
||||
U[i][MDIM-1] = -h[i];
|
||||
return U;
|
||||
}
|
||||
return inverse(T);
|
||||
}
|
||||
|
||||
/** \brief T inverse a matrix T = O*S, where O is isometry and S is a scaling matrix (todo optimize) */
|
||||
EX transmatrix z_inverse(const transmatrix& T) {
|
||||
return inverse(T);
|
||||
}
|
||||
|
||||
/** \brief T inverse a matrix T = O*P, where O is orthogonal and P is an isometry (todo optimize) */
|
||||
EX transmatrix view_inverse(transmatrix T) {
|
||||
return inverse(T);
|
||||
}
|
||||
|
||||
/** \brief T inverse a matrix T = P*O, where O is orthogonal and P is an isometry (todo optimize) */
|
||||
EX transmatrix iview_inverse(transmatrix T) {
|
||||
return inverse(T);
|
||||
}
|
||||
|
||||
EX pair<ld, hyperpoint> product_decompose(hyperpoint h) {
|
||||
ld z = zlevel(h);
|
||||
return make_pair(z, mscale(h, -z));
|
||||
@ -1050,7 +1101,7 @@ EX ld hdist(const hyperpoint& h1, const hyperpoint& h2) {
|
||||
return hypot(PIU(hdist(d1.second, d2.second)), d1.first - d2.first);
|
||||
}
|
||||
case gcSL2:
|
||||
return hdist0(inverse(slr::translate(h1)) * h2);
|
||||
return hdist0(stretch::itranslate(h1) * h2);
|
||||
default:
|
||||
if(iv < 0) return 0;
|
||||
return sqrt(iv);
|
||||
@ -1349,12 +1400,12 @@ EX hyperpoint inverse_exp(const shiftpoint h, flagtype prec IS(pNORMAL)) {
|
||||
|
||||
EX ld geo_dist(const hyperpoint h1, const hyperpoint h2, flagtype prec IS(pNORMAL)) {
|
||||
if(!nonisotropic) return hdist(h1, h2);
|
||||
return hypot_d(3, inverse_exp(shiftless(inverse(nisot::translate(h1)) * h2, prec)));
|
||||
return hypot_d(3, inverse_exp(shiftless(nisot::translate(h1, -1) * h2, prec)));
|
||||
}
|
||||
|
||||
EX ld geo_dist(const shiftpoint h1, const shiftpoint h2, flagtype prec IS(pNORMAL)) {
|
||||
if(!nonisotropic) return hdist(h1, h2);
|
||||
return hypot_d(3, inverse_exp(shiftless(inverse(nisot::translate(h1.h)) * h2.h, h2.shift - h1.shift), prec));
|
||||
return hypot_d(3, inverse_exp(shiftless(nisot::translate(h1.h, -1) * h2.h, h2.shift - h1.shift), prec));
|
||||
}
|
||||
|
||||
EX ld geo_dist_q(const hyperpoint h1, const hyperpoint h2, flagtype prec IS(pNORMAL)) {
|
||||
|
32
hypgraph.cpp
32
hypgraph.cpp
@ -1523,11 +1523,11 @@ EX void spinEdge(ld aspd) {
|
||||
fixmatrix(our);
|
||||
fixmatrix(their);
|
||||
if(GDIM == 2) {
|
||||
transmatrix T = their * inverse(our);
|
||||
transmatrix T = their * iso_inverse(our);
|
||||
hyperpoint H = T * xpush0(1);
|
||||
downspin = -atan2(H[1], H[0]);
|
||||
}
|
||||
else rotate_view(their * inverse(our));
|
||||
else rotate_view(their * iso_inverse(our));
|
||||
}
|
||||
else if(playerfound && vid.fixed_facing) {
|
||||
hyperpoint H = gpushxto0(unshift(playerV) * C0) * unshift(playerV) * xpush0(5);
|
||||
@ -1576,8 +1576,8 @@ EX void centerpc(ld aspd) {
|
||||
transmatrix T = pc->at;
|
||||
int sl = snakelevel(cwt.at);
|
||||
if((sl || vid.eye) && WDIM == 2) T = T * zpush(cgi.SLEV[sl] - cgi.FLOOR + vid.eye);
|
||||
View = inverse(T);
|
||||
if(prod) NLP = inverse(pc->ori);
|
||||
View = iso_inverse(T);
|
||||
if(prod) NLP = ortho_inverse(pc->ori);
|
||||
if(WDIM == 2) rotate_view( cspin(0, 1, M_PI) * cspin(2, 1, M_PI/2 + shmup::playerturny[id]) * spin(-M_PI/2) );
|
||||
return;
|
||||
}
|
||||
@ -1610,7 +1610,7 @@ EX void centerpc(ld aspd) {
|
||||
if(sl || vid.eye) T = T * zpush(cgi.SLEV[sl] - cgi.FLOOR + vid.eye);
|
||||
}
|
||||
#endif
|
||||
hyperpoint H = inverse(actual_view_transform) * tC0(T);
|
||||
hyperpoint H = ortho_inverse(actual_view_transform) * tC0(T);
|
||||
ld R = (zero_d(GDIM, H) && !prod) ? 0 : hdist0(H);
|
||||
if(R < 1e-9) {
|
||||
// either already centered or direction unknown
|
||||
@ -1649,7 +1649,7 @@ EX void optimizeview() {
|
||||
if(dual::split(optimizeview)) return;
|
||||
|
||||
cell *c = centerover;
|
||||
transmatrix iView = inverse(View);
|
||||
transmatrix iView = view_inverse(View);
|
||||
virtualRebase(centerover, iView);
|
||||
if(c != centerover && (sphere || sl2)) {
|
||||
transmatrix T = currentmap->relative_matrix(centerover, c, C0);
|
||||
@ -1657,7 +1657,7 @@ EX void optimizeview() {
|
||||
stretch::mstretch_matrix = T * stretch::mstretch_matrix;
|
||||
}
|
||||
|
||||
View = inverse(iView);
|
||||
View = iview_inverse(iView);
|
||||
fixmatrix(View);
|
||||
|
||||
#if CAP_ANIMATIONS
|
||||
@ -1732,7 +1732,7 @@ EX void resetview() {
|
||||
}
|
||||
cwtV = shiftless(View);
|
||||
current_display->which_copy =
|
||||
nonisotropic ? gpushxto0(tC0(inverse(View))) :
|
||||
nonisotropic ? gpushxto0(tC0(view_inverse(View))) :
|
||||
View;
|
||||
// SDL_LockSurface(s);
|
||||
// SDL_UnlockSurface(s);
|
||||
@ -2266,11 +2266,11 @@ EX hyperpoint unshift(shiftpoint T, ld to IS(0)) {
|
||||
}
|
||||
|
||||
EX transmatrix inverse_shift(const shiftmatrix& T1, const shiftmatrix& T2) {
|
||||
return inverse(T1.T) * unshift(T2, T1.shift);
|
||||
return iso_inverse(T1.T) * unshift(T2, T1.shift);
|
||||
}
|
||||
|
||||
EX hyperpoint inverse_shift(const shiftmatrix& T1, const shiftpoint& T2) {
|
||||
return inverse(T1.T) * unshift(T2, T1.shift);
|
||||
return iso_inverse(T1.T) * unshift(T2, T1.shift);
|
||||
}
|
||||
|
||||
EX void optimize_shift(shiftmatrix& T) {
|
||||
@ -2497,13 +2497,13 @@ EX transmatrix get_shift_view_of(const hyperpoint H, const transmatrix V) {
|
||||
return rgpushxto0(direct_exp(lp_iapply(H))) * V;
|
||||
}
|
||||
else if(!nisot::geodesic_movement) {
|
||||
transmatrix IV = inverse(V);
|
||||
transmatrix IV = view_inverse(V);
|
||||
nisot::fixmatrix(IV);
|
||||
const transmatrix V1 = inverse(IV);
|
||||
const transmatrix V1 = iview_inverse(IV);
|
||||
return V1 * eupush(IV * eupush(H) * V1 * C0);
|
||||
}
|
||||
else {
|
||||
return inverse(nisot::parallel_transport(inverse(V), -H));
|
||||
return iview_inverse(nisot::parallel_transport(view_inverse(V), -H));
|
||||
}
|
||||
}
|
||||
|
||||
@ -2514,8 +2514,8 @@ EX void shift_view(hyperpoint H) {
|
||||
View = get_shift_view_of(H, View);
|
||||
auto& wc = current_display->which_copy;
|
||||
if(nonisotropic || stretch::in()) {
|
||||
transmatrix ioldv = eupush(tC0(inverse(oView)));
|
||||
transmatrix newv = inverse(eupush(tC0(inverse(View))));
|
||||
transmatrix ioldv = eupush(tC0(view_inverse(oView)));
|
||||
transmatrix newv = inverse(eupush(tC0(view_inverse(View))));
|
||||
wc = newv * ioldv * wc;
|
||||
}
|
||||
else
|
||||
@ -2586,7 +2586,7 @@ EX void set_view(hyperpoint camera, hyperpoint forward, hyperpoint upward) {
|
||||
|
||||
if(det(rotator) < 0) rotator[0] = -rotator[0];
|
||||
|
||||
View = rotator * inverse(rgpushxto0(camera));
|
||||
View = rotator * iso_inverse(rgpushxto0(camera));
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -1565,7 +1565,7 @@ EX namespace mapeditor {
|
||||
ld step = 0.01;
|
||||
ld cdist = 0;
|
||||
|
||||
auto idt = inverse(unshift(drawtrans));
|
||||
auto idt = z_inverse(unshift(drawtrans));
|
||||
|
||||
auto qu = [&] (ld d) {
|
||||
ld d1 = front_edit;
|
||||
@ -1889,7 +1889,7 @@ EX namespace mapeditor {
|
||||
if(!mouseout()) {
|
||||
hyperpoint mh;
|
||||
if(GDIM == 2) {
|
||||
transmatrix T = inverse(unshift(drawtrans)) * rgpushxto0(ccenter); /* todo? */
|
||||
transmatrix T = z_inverse(unshift(drawtrans)) * rgpushxto0(ccenter); /* todo? */
|
||||
mh = spintox(gpushxto0(ccenter) * coldcenter) * T * unshift(mouseh);
|
||||
}
|
||||
else
|
||||
@ -2651,7 +2651,7 @@ EX namespace mapeditor {
|
||||
|
||||
if(sio.id == sih.id) {
|
||||
if(c == ls)
|
||||
textrans = inverse(V.T * applyPatterndir(ls, sio));
|
||||
textrans = z_inverse(V.T * applyPatterndir(ls, sio));
|
||||
|
||||
transmatrix mh = textrans * rgpushxto0(unshift(mouseh, V.shift));
|
||||
transmatrix ml = textrans * rgpushxto0(unshift(lstart, V.shift));
|
||||
|
@ -173,7 +173,7 @@ EX namespace models {
|
||||
spiral_multiplier = cld(cos_spiral, sin_spiral) * cld(spiral_cone_rad * mul / 2., 0);
|
||||
}
|
||||
if(euclid) {
|
||||
euclidean_spin = pispin * inverse(cview().T * master_relative(centerover, true));
|
||||
euclidean_spin = pispin * iso_inverse(cview().T * master_relative(centerover, true));
|
||||
euclidean_spin = gpushxto0(euclidean_spin * C0) * euclidean_spin;
|
||||
hyperpoint h = inverse(euclidean_spin) * (C0 + (euc::eumove(gp::loc{1,0})*C0 - C0) * vpconf.spiral_x + (euc::eumove(gp::loc{0,1})*C0 - C0) * vpconf.spiral_y);
|
||||
spiral_multiplier = cld(0, 2 * M_PI) / cld(h[0], h[1]);
|
||||
|
@ -16,9 +16,9 @@ EX namespace nisot {
|
||||
|
||||
EX bool geodesic_movement = true;
|
||||
|
||||
EX transmatrix translate(hyperpoint h) {
|
||||
if(sl2)
|
||||
return slr::translate(h);
|
||||
EX transmatrix translate(hyperpoint h, ld co IS(1)) {
|
||||
if(sl2 || sphere)
|
||||
return co > 0 ? stretch::translate(h) : stretch::itranslate(h);
|
||||
transmatrix T = Id;
|
||||
for(int i=0; i<GDIM; i++) T[i][LDIM] = h[i];
|
||||
if(sol && nih) {
|
||||
@ -35,6 +35,7 @@ EX namespace nisot {
|
||||
}
|
||||
if(nil)
|
||||
T[2][1] = h[0];
|
||||
if(co < 0) return iso_inverse(T);
|
||||
return T;
|
||||
}
|
||||
|
||||
@ -927,7 +928,7 @@ EX namespace nilv {
|
||||
}
|
||||
|
||||
EX hyperpoint on_geodesic(hyperpoint s0, hyperpoint s1, ld x) {
|
||||
hyperpoint local = inverse(nisot::translate(s0)) * s1;
|
||||
hyperpoint local = nisot::translate(s0, -1) * s1;
|
||||
hyperpoint h = get_inverse_exp(local);
|
||||
return nisot::translate(s0) * formula_exp(h * x);
|
||||
}
|
||||
@ -1372,7 +1373,7 @@ EX namespace hybrid {
|
||||
T = spintox(T * h2) * T;
|
||||
w = T * C0;
|
||||
w[1] = -w[1];
|
||||
w = inverse(T) * w;
|
||||
w = iso_inverse(T) * w;
|
||||
};
|
||||
if(prod)
|
||||
((hrmap_hybrid*)currentmap)->in_underlying(f);
|
||||
@ -2046,7 +2047,7 @@ EX namespace rots {
|
||||
transmatrix Spin;
|
||||
hybrid::in_underlying_geometry([&] {
|
||||
hyperpoint h = tC0(T);
|
||||
Spin = inverse(gpushxto0(h) * T);
|
||||
Spin = iso_inverse(gpushxto0(h) * T);
|
||||
d = hr::inverse_exp(shiftless(h));
|
||||
alpha = atan2(Spin[0][1], Spin[0][0]);
|
||||
distance = hdist0(h);
|
||||
@ -2173,7 +2174,7 @@ EX namespace rots {
|
||||
auto g = std::move(gmatrix);
|
||||
auto g0 = std::move(gmatrix0);
|
||||
|
||||
ld alpha = atan2(inverse(NLP) * point3(1, 0, 0));
|
||||
ld alpha = atan2(ortho_inverse(NLP) * point3(1, 0, 0));
|
||||
|
||||
bool inprod = prod;
|
||||
transmatrix pView = View;
|
||||
@ -2762,7 +2763,7 @@ EX namespace nisot {
|
||||
EX void fixmatrix(transmatrix& T) {
|
||||
if(sphere) return hr::fixmatrix(T);
|
||||
transmatrix push = eupush( tC0(T) );
|
||||
transmatrix push_back = inverse(push);
|
||||
transmatrix push_back = eupush(tC0(T), -1);
|
||||
transmatrix gtl = push_back * T;
|
||||
{ dynamicval<eGeometry> g(geometry, gSphere); hr::fixmatrix(gtl); }
|
||||
T = push * gtl;
|
||||
@ -2771,14 +2772,14 @@ EX namespace nisot {
|
||||
EX transmatrix parallel_transport(const transmatrix Position, const hyperpoint direction) {
|
||||
auto P = Position;
|
||||
nisot::fixmatrix(P);
|
||||
if(!geodesic_movement) return inverse(eupush(Position * translate(-direction) * inverse(Position) * C0)) * Position;
|
||||
if(!geodesic_movement) return eupush(Position * translate(-direction) * inverse(Position) * C0, -1) * Position;
|
||||
return parallel_transport_bare(P, direction);
|
||||
}
|
||||
|
||||
EX transmatrix spin_towards(const transmatrix Position, const hyperpoint goal, flagtype prec IS(pNORMAL)) {
|
||||
|
||||
hyperpoint at = tC0(Position);
|
||||
transmatrix push_back = inverse(translate(at));
|
||||
transmatrix push_back = translate(at, -1);
|
||||
hyperpoint back_goal = push_back * goal;
|
||||
back_goal = inverse_exp(shiftless(back_goal), prec);
|
||||
|
||||
|
11
racing.cpp
11
racing.cpp
@ -778,7 +778,7 @@ EX bool set_view() {
|
||||
transmatrix at = ypush(-vid.yshift) * unshift(ggmatrix(who->base)) * who->at;
|
||||
|
||||
if(racing::player_relative || quotient || (kite::in() && GDIM == 3)) {
|
||||
View = inverse(at) * View;
|
||||
View = iso_inverse(at) * View;
|
||||
}
|
||||
else {
|
||||
int z = get_info(who->base).completion;
|
||||
@ -787,14 +787,15 @@ EX bool set_view() {
|
||||
cell *c2 = racing::track[min(z+steps, isize(racing::track)-1)];
|
||||
transmatrix T1 = ypush(-vid.yshift) * unshift(ggmatrix(c1));
|
||||
transmatrix T2 = ypush(-vid.yshift) * unshift(ggmatrix(c2));
|
||||
transmatrix T = spintox(inverse(T1) * T2 * C0);
|
||||
hyperpoint h = T * inverse(T1) * at * C0;
|
||||
transmatrix iT1 = iso_inverse(T1);
|
||||
transmatrix T = spintox(iT1 * T2 * C0);
|
||||
hyperpoint h = T * iT1 * at * C0;
|
||||
ld y = GDIM == 2 ? asin_auto(h[1]) : asin_auto(hypot(h[1], h[2]));
|
||||
ld x = asin_auto(h[0] / cos_auto(y));
|
||||
x += race_advance;
|
||||
if(GDIM == 3 && race_advance == 0 && pmodel == mdPerspective) race_advance = -1;
|
||||
transmatrix Z = T1 * inverse(T) * xpush(x);
|
||||
View = inverse(Z) * View;
|
||||
transmatrix Z = T1 * iso_inverse(T) * xpush(x);
|
||||
View = iso_inverse(Z) * View;
|
||||
if(GDIM == 3) View = cspin(2, 0, M_PI/2) * View;
|
||||
fixmatrix(View);
|
||||
}
|
||||
|
14
rug.cpp
14
rug.cpp
@ -183,7 +183,7 @@ EX rugpoint *addRugpoint(shiftpoint h, double dist) {
|
||||
m->valid = false;
|
||||
|
||||
if(euclid && quotient && !bounded) {
|
||||
hyperpoint h1 = inverse(models::euclidean_spin) * eumove(euc::eu.user_axes[1]) * C0;
|
||||
hyperpoint h1 = iso_inverse(models::euclidean_spin) * eumove(euc::eu.user_axes[1]) * C0;
|
||||
h1 /= sqhypot_d(2, h1);
|
||||
if(nonorientable) h1 /= 2;
|
||||
m->valid = good_shape = true;
|
||||
@ -626,7 +626,7 @@ bool force(rugpoint& m1, rugpoint& m2, double rd, bool is_anticusp=false, double
|
||||
bool nonzero = abs(t-rd) > err_zero_current;
|
||||
double forcev = (t - rd) / 2; // 20.0;
|
||||
|
||||
transmatrix T = inverse(rgpushxto0(m1.native));
|
||||
transmatrix T = iso_inverse(rgpushxto0(m1.native));
|
||||
hyperpoint ie = inverse_exp(shiftless(T * m2.native));
|
||||
|
||||
transmatrix iT = rgpushxto0(m1.native);
|
||||
@ -1086,9 +1086,9 @@ EX void drawRugScene() {
|
||||
auto& rug = queuecurve(shiftless(Id), 0, 0xFFFFFFFF, PPR::LINE);
|
||||
|
||||
if(nonisotropic) {
|
||||
transmatrix T2 = eupush( tC0(inverse(rugView)) );
|
||||
transmatrix T2 = eupush( tC0(view_inverse(rugView)) );
|
||||
NLP = rugView * T2;
|
||||
rug.V = shiftless(inverse(NLP) * rugView);
|
||||
rug.V = shiftless(ortho_inverse(NLP) * rugView);
|
||||
}
|
||||
else {
|
||||
rug.V = shiftless(rugView);
|
||||
@ -1361,9 +1361,9 @@ EX shiftpoint gethyper(ld x, ld y) {
|
||||
if(sp == 1 || sp == 2) continue;
|
||||
}
|
||||
|
||||
applymodel(shiftless(inverse(NLP) * rugView * r0->native), p0);
|
||||
applymodel(shiftless(inverse(NLP) * rugView * r1->native), p1);
|
||||
applymodel(shiftless(inverse(NLP) * rugView * r2->native), p2);
|
||||
applymodel(shiftless(ortho_inverse(NLP) * rugView * r0->native), p0);
|
||||
applymodel(shiftless(ortho_inverse(NLP) * rugView * r1->native), p1);
|
||||
applymodel(shiftless(ortho_inverse(NLP) * rugView * r2->native), p2);
|
||||
}
|
||||
|
||||
if(error || spherepoints == 1 || spherepoints == 2) continue;
|
||||
|
@ -1172,7 +1172,7 @@ EX void reflect_view() {
|
||||
cell *mbase = centerover;
|
||||
cell *c = centerover;
|
||||
if(shmup::reflect(c, mbase, T))
|
||||
View = inverse(T.T) * View;
|
||||
View = iso_inverse(T.T) * View;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -197,11 +197,11 @@ void monster::rebasePat(const shiftmatrix& new_pat, cell *c2) {
|
||||
else {
|
||||
auto T = calc_relative_matrix(c2, base, tC0(at));
|
||||
base = c2;
|
||||
at = inverse(T) * at;
|
||||
at = iso_inverse(T) * at;
|
||||
}
|
||||
}
|
||||
if(multi::players == 1 && this == shmup::pc[0] && !eqmatrix(old_at, at))
|
||||
current_display->which_copy = current_display->which_copy * old_at * inverse(at);
|
||||
current_display->which_copy = current_display->which_copy * old_at * iso_inverse(at);
|
||||
return;
|
||||
}
|
||||
if(multi::players == 1 && this == shmup::pc[0])
|
||||
@ -1354,7 +1354,7 @@ bool reflectmatrix(shiftmatrix& M, cell *c1, cell *c2, bool onlypos) {
|
||||
ld d = hdist0(tC0(H));
|
||||
transmatrix T = xpush(-d/2) * S * inverse_shift(gmatrix[c1], M);
|
||||
if(onlypos && tC0(T)[0] < 0) return false;
|
||||
M = gmatrix[c1] * inverse(S) * xpush(d/2) * MirrorX * T;
|
||||
M = gmatrix[c1] * iso_inverse(S) * xpush(d/2) * MirrorX * T;
|
||||
return true;
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user