mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2025-01-20 06:03:01 +00:00
Sol geometry
This commit is contained in:
parent
946570da31
commit
dd5d317cb3
@ -5945,8 +5945,8 @@ void drawcell(cell *c, transmatrix V, int spinv, bool mirrored) {
|
||||
int d = (wcol & 0xF0F0F0) >> 4;
|
||||
|
||||
for(int a=0; a<c->type; a++)
|
||||
if(c->move(a) && (sol || !isWall3(c->move(a), dummy))) {
|
||||
if(pmodel == mdPerspective && !sphere && !quotient) {
|
||||
if(c->move(a) && !isWall3(c->move(a), dummy)) {
|
||||
if(pmodel == mdPerspective && !sphere && !quotient && !sol) {
|
||||
if(a < 4 && among(geometry, gHoroTris, gBinary3) && celldistAlt(c) >= celldistAlt(viewctr.at->c7)) continue;
|
||||
else if(a < 2 && among(geometry, gHoroRec) && celldistAlt(c) >= celldistAlt(viewctr.at->c7)) continue;
|
||||
else if(c->move(a)->master->distance > c->master->distance && c->master->distance > viewctr.at->distance && !quotient) continue;
|
||||
|
@ -38,7 +38,7 @@ ld inverse_tanh(ld x) { return log((1+x)/(1-x)) / 2; } */
|
||||
|
||||
ld squar(ld x) { return x*x; }
|
||||
|
||||
int sig(int z) { return (sphere || z<GDIM)?1:-1; }
|
||||
int sig(int z) { return (sphere || sol || z<GDIM)?1:-1; }
|
||||
|
||||
int curvature() {
|
||||
switch(cgclass) {
|
||||
@ -116,7 +116,7 @@ ld atan_auto(ld x) {
|
||||
case gcEuclid: return x;
|
||||
case gcHyperbolic: return atanh(x);
|
||||
case gcSphere: return atan(x);
|
||||
default: return 1;
|
||||
default: return x;
|
||||
}
|
||||
}
|
||||
|
||||
@ -125,7 +125,7 @@ ld atan2_auto(ld y, ld x) {
|
||||
case gcEuclid: return y/x;
|
||||
case gcHyperbolic: return atanh(y/x);
|
||||
case gcSphere: return atan2(y, x);
|
||||
default: return 1;
|
||||
default: return y/x;
|
||||
}
|
||||
}
|
||||
|
||||
@ -142,11 +142,11 @@ ld edge_of_triangle_with_angles(ld alpha, ld beta, ld gamma) {
|
||||
// (this is analogous to representing a sphere with points such that x^2+y^2+z^2 == 1)
|
||||
|
||||
hyperpoint hpxy(ld x, ld y) {
|
||||
return hpxyz(x,y,euclid ? 1 : sphere ? sqrt(1-x*x-y*y) : sqrt(1+x*x+y*y));
|
||||
return hpxyz(x,y, eusol ? 1 : sphere ? sqrt(1-x*x-y*y) : sqrt(1+x*x+y*y));
|
||||
}
|
||||
|
||||
hyperpoint hpxy3(ld x, ld y, ld z) {
|
||||
return hpxyz3(x,y,z, euclid ? 1 : sphere ? sqrt(1-x*x-y*y-z*z) : sqrt(1+x*x+y*y+z*z));
|
||||
return hpxyz3(x,y,z, eusol ? 1 : sphere ? sqrt(1-x*x-y*y-z*z) : sqrt(1+x*x+y*y+z*z));
|
||||
}
|
||||
|
||||
// origin of the hyperbolic plane
|
||||
@ -201,7 +201,7 @@ ld dhypot_d(int d, const hyperpoint& a, const hyperpoint& b) {
|
||||
}
|
||||
|
||||
ld zlevel(const hyperpoint &h) {
|
||||
if(euclid) return h[GDIM];
|
||||
if(eusol) return h[GDIM];
|
||||
else if(sphere) return sqrt(intval(h, Hypc));
|
||||
else return (h[GDIM] < 0 ? -1 : 1) * sqrt(-intval(h, Hypc));
|
||||
}
|
||||
@ -283,12 +283,14 @@ transmatrix eupush3(ld x, ld y, ld z) {
|
||||
T[0][GDIM] = x;
|
||||
T[1][GDIM] = y;
|
||||
if(GDIM == 3) T[2][GDIM] = z;
|
||||
if(sol) T[0][0] = exp(-z), T[1][1] = exp(+z);
|
||||
return T;
|
||||
}
|
||||
|
||||
transmatrix eupush(hyperpoint h) {
|
||||
transmatrix T = Id;
|
||||
for(int i=0; i<GDIM; i++) T[i][GDIM] = h[i];
|
||||
if(sol) T[0][0] = exp(-h[2]), T[1][1] = exp(+h[2]);
|
||||
return T;
|
||||
}
|
||||
|
||||
@ -310,6 +312,12 @@ transmatrix euaffine(hyperpoint h) {
|
||||
|
||||
transmatrix cpush(int cid, ld alpha) {
|
||||
transmatrix T = Id;
|
||||
if(sol) {
|
||||
T[cid][GDIM] = alpha;
|
||||
if(cid == 2)
|
||||
T[0][0] = exp(-alpha), T[1][1] = exp(+alpha);
|
||||
return T;
|
||||
}
|
||||
T[GDIM][GDIM] = T[cid][cid] = cos_auto(alpha);
|
||||
T[cid][GDIM] = sin_auto(alpha);
|
||||
T[GDIM][cid] = -curvature() * sin_auto(alpha);
|
||||
@ -331,7 +339,7 @@ bool eqmatrix(transmatrix A, transmatrix B, ld eps) {
|
||||
// in the 3D space, move the point h orthogonally to the (x,y) plane by z units
|
||||
hyperpoint orthogonal_move(const hyperpoint& h, ld z) {
|
||||
if(!hyperbolic) return rgpushxto0(h) * cpush(2, z) * C0;
|
||||
if(euclid) return hpxy3(h[0], h[1], h[2] + z);
|
||||
if(eusol) return hpxy3(h[0], h[1], h[2] + z);
|
||||
ld u = 1;
|
||||
if(h[2]) z += asin_auto(h[2]), u /= acos_auto(z);
|
||||
u *= cos_auto(z);
|
||||
@ -473,7 +481,7 @@ transmatrix rpushxto0(const hyperpoint& H) {
|
||||
}
|
||||
|
||||
transmatrix ggpushxto0(const hyperpoint& H, ld co) {
|
||||
if(euclid) {
|
||||
if(eusol) {
|
||||
using namespace hyperpoint_vec;
|
||||
return eupush(co * H);
|
||||
}
|
||||
@ -505,7 +513,8 @@ transmatrix rgpushxto0(const hyperpoint& H) {
|
||||
// (without using this, imprecision could accumulate)
|
||||
|
||||
void fixmatrix(transmatrix& T) {
|
||||
if(euclid) {
|
||||
if(sol) ;
|
||||
else if(euclid) {
|
||||
for(int x=0; x<GDIM; x++) for(int y=0; y<=x; y++) {
|
||||
ld dp = 0;
|
||||
for(int z=0; z<GDIM; z++) dp += T[z][x] * T[z][y];
|
||||
@ -628,7 +637,7 @@ ld hdist0(const hyperpoint& mh) {
|
||||
return res;
|
||||
}
|
||||
default:
|
||||
return 0;
|
||||
return hypot_d(GDIM, mh);
|
||||
}
|
||||
}
|
||||
|
||||
@ -641,7 +650,7 @@ ld circlelength(ld r) {
|
||||
case gcSphere:
|
||||
return 2 * M_PI * sin(r);
|
||||
default:
|
||||
return 0;
|
||||
return 2 * M_PI * r;
|
||||
}
|
||||
}
|
||||
|
||||
@ -659,7 +668,8 @@ ld hdist(const hyperpoint& h1, const hyperpoint& h2) {
|
||||
case gcSphere:
|
||||
return 2 * asin_auto_clamp(sqrt(iv) / 2);
|
||||
default:
|
||||
return 0;
|
||||
if(iv < 0) return 0;
|
||||
return sqrt(iv);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -223,6 +223,7 @@ void band_conformal(ld& x, ld& y) {
|
||||
x *= 2; y *= 2;
|
||||
break;
|
||||
case gcEuclid:
|
||||
default:
|
||||
// y = y;
|
||||
y *= 2; x *= 2;
|
||||
break;
|
||||
@ -422,7 +423,7 @@ void applymodel(hyperpoint H, hyperpoint& ret) {
|
||||
break;
|
||||
}
|
||||
|
||||
case gcEuclid: {
|
||||
case gcEuclid: default: {
|
||||
// stereographic projection to a sphere
|
||||
auto hd = hdist0(H) / vid.euclid_to_sphere;
|
||||
if(hd == 0) ret = hpxyz(0, 0, -1);
|
||||
|
@ -2518,7 +2518,7 @@ void setdist(cell *c, int d, cell *from) {
|
||||
|
||||
if(d >= BARLEV) {
|
||||
|
||||
if(binarytiling && WDIM == 3 && !c->land) {
|
||||
if(binarytiling && WDIM == 3 && !c->land && !sol) {
|
||||
ld z = vid.binary_width;
|
||||
cell *cseek = c;
|
||||
int step = 0;
|
||||
|
19
polygons.cpp
19
polygons.cpp
@ -714,7 +714,7 @@ void geometry_information::make_wall(int id, vector<hyperpoint> vertices, bool f
|
||||
hyperpoint v2 = vertices[(a+1)%n] - center;
|
||||
texture_order([&] (ld x, ld y) {
|
||||
hyperpoint h = center + v1 * x + v2 * y;
|
||||
if(!binarytiling) { hpcpush(normalize(h)); return; }
|
||||
if(sol || !binarytiling) { hpcpush(normalize(h)); return; }
|
||||
hyperpoint res = binary::parabolic3(h[0], h[1]) * xpush0(yy*h[2]);
|
||||
hpcpush(res);
|
||||
});
|
||||
@ -725,7 +725,7 @@ void geometry_information::make_wall(int id, vector<hyperpoint> vertices, bool f
|
||||
int STEP = vid.texture_step;
|
||||
for(int a=0; a<n; a++) for(int y=0; y<STEP; y++) {
|
||||
hyperpoint h = (vertices[a] * (STEP-y) + vertices[(a+1)%n] * y)/STEP;
|
||||
if(!binarytiling) { hpcpush(normalize(h)); continue; }
|
||||
if(sol || !binarytiling) { hpcpush(normalize(h)); continue; }
|
||||
hyperpoint res = binary::parabolic3(h[0], h[1]) * xpush0(yy*h[2]);
|
||||
hpcpush(res);
|
||||
}
|
||||
@ -915,6 +915,21 @@ void geometry_information::create_wall3d() {
|
||||
make_wall(w, vertices, 0);
|
||||
}
|
||||
}
|
||||
|
||||
if(geometry == gSol) {
|
||||
ld zstep = -log(2) / 2;
|
||||
ld bwh = vid.binary_width * zstep;
|
||||
auto pt = [&] (int x, int y, int z) { return xpush(bwh*x) * ypush(bwh*y) * zpush(zstep*z) * C0; };
|
||||
println(hlog, xpush(2) * zpush(log(2)) * ypush(3) * C0);
|
||||
make_wall(0, {pt(-1,-1,-1), pt(-1,-1,+1), pt(-1,00,+1), pt(-1,+1,+1), pt(-1,+1,-1)});
|
||||
make_wall(1, {pt(-1,-1,-1), pt(00,-1,-1), pt(+1,-1,-1), pt(+1,-1,+1), pt(-1,-1,+1)});
|
||||
make_wall(2, {pt(+1,+1,-1), pt(+1,-1,-1), pt(00,-1,-1), pt(00,+1,-1)});
|
||||
make_wall(3, {pt(00,+1,-1), pt(00,-1,-1), pt(-1,-1,-1), pt(-1,+1,-1)});
|
||||
make_wall(4, {pt(+1,-1,-1), pt(+1,-1,+1), pt(+1,00,+1), pt(+1,+1,+1), pt(+1,+1,-1)});
|
||||
make_wall(5, {pt(-1,+1,-1), pt(00,+1,-1), pt(+1,+1,-1), pt(+1,+1,+1), pt(-1,+1,+1)});
|
||||
make_wall(6, {pt(-1,+1,+1), pt(+1,+1,+1), pt(+1,00,+1), pt(-1,00,+1)});
|
||||
make_wall(7, {pt(-1,00,+1), pt(+1,00,+1), pt(+1,-1,+1), pt(-1,-1,+1)});
|
||||
}
|
||||
|
||||
if(DIM == 3) {
|
||||
shMiniWall3D.resize(isize(shWall3D));
|
||||
|
Loading…
Reference in New Issue
Block a user