mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2025-10-31 22:12:59 +00:00
hyperpoint adjusted for 3D geometry
This commit is contained in:
340
hyperpoint.cpp
340
hyperpoint.cpp
@@ -37,7 +37,7 @@ ld inverse_tanh(ld x) { return log((1+x)/(1-x)) / 2; } */
|
||||
|
||||
ld squar(ld x) { return x*x; }
|
||||
|
||||
int sig(int z) { return (sphere || z<2)?1:-1; }
|
||||
int sig(int z) { return (sphere || z<DIM)?1:-1; }
|
||||
|
||||
int curvature() {
|
||||
switch(cgclass) {
|
||||
@@ -118,65 +118,67 @@ ld atan2_auto(ld y, ld x) {
|
||||
// by points in 3D space (Minkowski space) such that x^2+y^2-z^2 == -1, z > 0
|
||||
// (this is analogous to representing a sphere with points such that x^2+y^2+z^2 == 1)
|
||||
|
||||
hyperpoint hpxy(ld x, ld y) {
|
||||
return hpxyz(x,y, euclid ? 1 : sphere ? sqrt(1-x*x-y*y) : sqrt(1+x*x+y*y));
|
||||
hyperpoint hpxy(ld x, ld y DC(, ld z)) {
|
||||
return hpxyz(x,y,DC(z,) euclid ? 1 : sphere ? sqrt(1-x*x-y*y D3(-z*z)) : sqrt(1+x*x+y*y D3(+z*z)));
|
||||
}
|
||||
|
||||
// center of the pseudosphere
|
||||
const hyperpoint Hypc(0,0,0);
|
||||
const hyperpoint Hypc(0,0,0 DC(,0));
|
||||
|
||||
// origin of the hyperbolic plane
|
||||
const hyperpoint C0(0,0,1);
|
||||
const hyperpoint C0(0,0 DC(,0) ,1);
|
||||
|
||||
// a point (I hope this number needs no comments ;) )
|
||||
const hyperpoint Cx1(1,0,1.41421356237);
|
||||
const hyperpoint Cx1(1,0 DC(,0) ,1.41421356237);
|
||||
|
||||
// this function returns approximate square of distance between two points
|
||||
// (in the spherical analogy, this would be the distance in the 3D space,
|
||||
// through the interior, not on the surface)
|
||||
// also used to verify whether a point h1 is on the hyperbolic plane by using Hypc for h2
|
||||
|
||||
bool zero2(hyperpoint h) { return h[0] == 0 && h[1] == 0; }
|
||||
bool zero2(hyperpoint h) { return h[0] == 0 && h[1] == 0 D3(&& h[2] == 0); }
|
||||
|
||||
bool zero3(hyperpoint h) { return h[0] == 0 && h[1] == 0 && h[2] == 0; }
|
||||
bool zero3(hyperpoint h) { return h[0] == 0 && h[1] == 0 && h[2] == 0 D3(&& h[3] == 0); }
|
||||
|
||||
ld intval(const hyperpoint &h1, const hyperpoint &h2) {
|
||||
ld res = 0;
|
||||
for(int i=0; i<MDIM; i++) res += squar(h1[i] - h2[i]) * sig(i);
|
||||
if(elliptic) {
|
||||
double d1 = squar(h1[0]-h2[0]) + squar(h1[1]-h2[1]) + squar(h1[2]-h2[2]);
|
||||
double d2 = squar(h1[0]+h2[0]) + squar(h1[1]+h2[1]) + squar(h1[2]+h2[2]);
|
||||
return min(d1, d2);
|
||||
ld res2 = 0;
|
||||
for(int i=0; i<MDIM; i++) res2 += squar(h1[i] + h2[i]) * sig(i);
|
||||
return min(res, res2);
|
||||
}
|
||||
return squar(h1[0]-h2[0]) + squar(h1[1]-h2[1]) + (sphere?1:euclid?0:-1) * squar(h1[2]-h2[2]);
|
||||
return res;
|
||||
}
|
||||
|
||||
ld intvalxy(const hyperpoint &h1, const hyperpoint &h2) {
|
||||
return squar(h1[0]-h2[0]) + squar(h1[1]-h2[1]);
|
||||
return squar(h1[0]-h2[0]) + squar(h1[1]-h2[1]) D3(+ squar(h1[2]-h2[2]));
|
||||
}
|
||||
|
||||
ld intvalxyz(const hyperpoint &h1, const hyperpoint &h2) {
|
||||
return squar(h1[0]-h2[0]) + squar(h1[1]-h2[1]) + squar(h1[2]-h2[2]);
|
||||
return squar(h1[0]-h2[0]) + squar(h1[1]-h2[1]) + squar(h1[2]-h2[2]) D3(+ squar(h1[3]-h2[3]));
|
||||
}
|
||||
|
||||
ld hypot2(const hyperpoint& h) {
|
||||
return sqrt(h[0]*h[0]+h[1]*h[1]);
|
||||
}
|
||||
|
||||
ld hypot3(const hyperpoint& h) {
|
||||
return sqrt(h[0]*h[0]+h[1]*h[1]+h[2]*h[2]);
|
||||
}
|
||||
|
||||
ld sqhypot2(const hyperpoint& h) {
|
||||
return h[0]*h[0]+h[1]*h[1];
|
||||
return h[0]*h[0]+h[1]*h[1] D3(+h[2]*h[2]);
|
||||
}
|
||||
|
||||
ld sqhypot3(const hyperpoint& h) {
|
||||
return h[0]*h[0]+h[1]*h[1]+h[2]*h[2];
|
||||
return h[0]*h[0]+h[1]*h[1]+h[2]*h[2] D3(+h[3]*h[3]);
|
||||
}
|
||||
|
||||
ld hypot2(const hyperpoint& h) {
|
||||
return sqrt(sqhypot2(h));
|
||||
}
|
||||
|
||||
ld hypot3(const hyperpoint& h) {
|
||||
return sqrt(sqhypot3(h));
|
||||
}
|
||||
|
||||
ld zlevel(const hyperpoint &h) {
|
||||
if(euclid) return h[2];
|
||||
if(euclid) return h[DIM];
|
||||
else if(sphere) return sqrt(intval(h, Hypc));
|
||||
else return (h[2] < 0 ? -1 : 1) * sqrt(-intval(h, Hypc));
|
||||
else return (h[DIM] < 0 ? -1 : 1) * sqrt(-intval(h, Hypc));
|
||||
}
|
||||
|
||||
ld hypot_auto(ld x, ld y) {
|
||||
@@ -195,7 +197,7 @@ ld hypot_auto(ld x, ld y) {
|
||||
// move H back to the sphere/hyperboloid/plane
|
||||
hyperpoint normalize(hyperpoint H) {
|
||||
ld Z = zlevel(H);
|
||||
for(int c=0; c<3; c++) H[c] /= Z;
|
||||
for(int c=0; c<MDIM; c++) H[c] /= Z;
|
||||
return H;
|
||||
}
|
||||
|
||||
@@ -213,7 +215,7 @@ hyperpoint midz(const hyperpoint& H1, const hyperpoint& H2) {
|
||||
ld Z = 2;
|
||||
|
||||
if(!euclid) Z = zlevel(H3) * 2 / (zlevel(H1) + zlevel(H2));
|
||||
for(int c=0; c<3; c++) H3[c] /= Z;
|
||||
for(int c=0; c<MDIM; c++) H3[c] /= Z;
|
||||
|
||||
return H3;
|
||||
}
|
||||
@@ -225,25 +227,26 @@ hyperpoint midz(const hyperpoint& H1, const hyperpoint& H2) {
|
||||
// (just like isometries of the sphere are represented by rotation matrices)
|
||||
|
||||
// rotate by alpha degrees
|
||||
transmatrix spin(ld alpha) {
|
||||
transmatrix cspin(int a, int b, ld alpha) {
|
||||
transmatrix T = Id;
|
||||
T[0][0] = +cos(alpha); T[0][1] = +sin(alpha);
|
||||
T[1][0] = -sin(alpha); T[1][1] = +cos(alpha);
|
||||
T[2][2] = 1;
|
||||
T[a][a] = +cos(alpha); T[a][b] = +sin(alpha);
|
||||
T[b][a] = -sin(alpha); T[b][b] = +cos(alpha);
|
||||
return T;
|
||||
}
|
||||
|
||||
transmatrix eupush(ld x, ld y) {
|
||||
transmatrix spin(ld alpha) { return cspin(0, 1, alpha); }
|
||||
|
||||
transmatrix eupush(ld x, ld y DC(, ld z)) {
|
||||
transmatrix T = Id;
|
||||
T[0][2] = x;
|
||||
T[1][2] = y;
|
||||
T[0][DIM] = x;
|
||||
T[1][DIM] = y;
|
||||
D3( T[2][DIM] = z );
|
||||
return T;
|
||||
}
|
||||
|
||||
transmatrix eupush(hyperpoint h) {
|
||||
transmatrix T = Id;
|
||||
T[0][2] = h[0];
|
||||
T[1][2] = h[1];
|
||||
for(int i=0; i<DIM; i++) T[i][DIM] = h[i];
|
||||
return T;
|
||||
}
|
||||
|
||||
@@ -263,183 +266,202 @@ transmatrix euaffine(hyperpoint h) {
|
||||
return T;
|
||||
}
|
||||
|
||||
// push alpha units to the right
|
||||
transmatrix xpush(ld alpha) {
|
||||
if(euclid) return eupush(alpha, 0);
|
||||
transmatrix cpush(int cid, ld alpha) {
|
||||
transmatrix T = Id;
|
||||
if(sphere) {
|
||||
T[0][0] = +cos(alpha); T[0][2] = +sin(alpha);
|
||||
T[2][0] = -sin(alpha); T[2][2] = +cos(alpha);
|
||||
}
|
||||
else {
|
||||
T[0][0] = +cosh(alpha); T[0][2] = +sinh(alpha);
|
||||
T[2][0] = +sinh(alpha); T[2][2] = +cosh(alpha);
|
||||
}
|
||||
T[DIM][DIM] = T[cid][cid] = cos_auto(alpha);
|
||||
T[cid][DIM] = sin_auto(alpha);
|
||||
T[DIM][cid] = -curvature() * sin_auto(alpha);
|
||||
return T;
|
||||
}
|
||||
|
||||
inline hyperpoint xpush0(ld x) {
|
||||
hyperpoint h;
|
||||
if(euclid) return hpxy(x, 0);
|
||||
else if(sphere) h[0] = sin(x), h[1] = 0, h[2] = cos(x);
|
||||
else h[0] = sinh(x), h[1] = 0, h[2] = cosh(x);
|
||||
// push alpha units to the right
|
||||
transmatrix xpush(ld alpha) { return cpush(0, alpha); }
|
||||
|
||||
inline hyperpoint cpush0(int c, ld x) {
|
||||
hyperpoint h = Hypc;
|
||||
h[DIM] = cos_auto(x);
|
||||
h[c] = sin_auto(x);
|
||||
return h;
|
||||
}
|
||||
|
||||
inline hyperpoint ypush0(ld x) {
|
||||
hyperpoint h;
|
||||
if(euclid) return hpxy(x, 0);
|
||||
else if(sphere) h[0] = 0, h[1] = sin(x), h[2] = cos(x);
|
||||
else h[0] = 0, h[1] = sinh(x), h[2] = cosh(x);
|
||||
return h;
|
||||
}
|
||||
inline hyperpoint xpush0(ld x) { return cpush0(0, x); }
|
||||
|
||||
inline hyperpoint ypush0(ld x) { return cpush0(1, x); }
|
||||
|
||||
inline hyperpoint xspinpush0(ld alpha, ld x) {
|
||||
// return spin(alpha)*xpush0(x);
|
||||
ld s;
|
||||
hyperpoint h;
|
||||
if(euclid) return hpxy(x*cos(alpha), -x*sin(alpha));
|
||||
else if(sphere) s=sin(x), h[0] = s*cos(alpha), h[1] = -s*sin(alpha), h[2] = cos(x);
|
||||
else s=sinh(x), h[0] = s*cos(alpha), h[1] = -s*sin(alpha), h[2] = cosh(x);
|
||||
hyperpoint h = Hypc;
|
||||
h[DIM] = cos_auto(x);
|
||||
h[0] = sin_auto(x) * cos(alpha);
|
||||
h[1] = sin_auto(x) * -sin(alpha);
|
||||
return h;
|
||||
}
|
||||
|
||||
// push alpha units vertically
|
||||
transmatrix ypush(ld alpha) {
|
||||
if(euclid) return eupush(0, alpha);
|
||||
transmatrix T = Id;
|
||||
if(sphere) {
|
||||
T[1][1] = +cos(alpha); T[1][2] = +sin(alpha);
|
||||
T[2][1] = -sin(alpha); T[2][2] = +cos(alpha);
|
||||
}
|
||||
transmatrix ypush(ld alpha) { return cpush(1, alpha); }
|
||||
|
||||
transmatrix parabolic1(ld u DC(, ld v)) {
|
||||
if(euclid)
|
||||
return ypush(u);
|
||||
else {
|
||||
T[1][1] = +cosh(alpha); T[1][2] = +sinh(alpha);
|
||||
T[2][1] = +sinh(alpha); T[2][2] = +cosh(alpha);
|
||||
ld diag = (u*u D3(+v*v))/2;
|
||||
#if DIM==2
|
||||
return transmatrix {{{-diag+1, u, diag}, {-u, 1, u}, {-diag, u, diag+1}}};
|
||||
#else
|
||||
return transmatrix {{{-diag+1, u, v, diag}, {-u, 1, 0, u}, {-v, 0, 1, v}, {-diag, u, v, diag+1}}};
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
transmatrix spintoc(const hyperpoint& H, int t, int f) {
|
||||
transmatrix T = Id;
|
||||
ld R = hypot(H[f], H[t]);
|
||||
if(R >= 1e-12) {
|
||||
T[t][t] = +H[t]/R; T[t][f] = +H[f]/R;
|
||||
T[f][t] = -H[f]/R; T[f][f] = +H[t]/R;
|
||||
}
|
||||
return T;
|
||||
}
|
||||
|
||||
transmatrix parabolic1(ld u) {
|
||||
if(euclid)
|
||||
return ypush(u);
|
||||
else
|
||||
return transmatrix {{{-u*u/2+1, u, u*u/2}, {-u, 1, u}, {-u*u/2, u, u*u/2+1}}};
|
||||
transmatrix rspintoc(const hyperpoint& H, int t, int f) {
|
||||
transmatrix T = Id;
|
||||
ld R = hypot(H[f], H[t]);
|
||||
if(R >= 1e-12) {
|
||||
T[t][t] = +H[t]/R; T[t][f] = -H[f]/R;
|
||||
T[f][t] = +H[f]/R; T[f][f] = +H[t]/R;
|
||||
}
|
||||
return T;
|
||||
}
|
||||
|
||||
// rotate the hyperbolic plane around C0 such that H[1] == 0 and H[0] >= 0
|
||||
transmatrix spintox(const hyperpoint& H) {
|
||||
transmatrix T = Id;
|
||||
ld R = sqrt(H[0] * H[0] + H[1] * H[1]);
|
||||
if(R >= 1e-12) {
|
||||
T[0][0] = +H[0]/R; T[0][1] = +H[1]/R;
|
||||
T[1][0] = -H[1]/R; T[1][1] = +H[0]/R;
|
||||
}
|
||||
return T;
|
||||
transmatrix spintox(const hyperpoint& H) {
|
||||
#if DIM==2
|
||||
return spintoc(H, 0, 1);
|
||||
#else
|
||||
transmatrix T1 = spintoc(H, 0, 1);
|
||||
return spintoc(T1*H, 0, 2) * T1;
|
||||
#endif
|
||||
}
|
||||
|
||||
void set_column(transmatrix& T, int i, const hyperpoint& H) {
|
||||
for(int j=0; j<3; j++)
|
||||
for(int j=0; j<MDIM; j++)
|
||||
T[j][i] = H[j];
|
||||
}
|
||||
|
||||
transmatrix build_matrix(hyperpoint h1, hyperpoint h2, hyperpoint h3) {
|
||||
transmatrix T;
|
||||
for(int i=0; i<3; i++)
|
||||
for(int i=0; i<MDIM; i++)
|
||||
T[i][0] = h1[i],
|
||||
T[i][1] = h2[i],
|
||||
T[i][2] = h3[i];
|
||||
T[i][2] = h3[i]
|
||||
DC(, T[i][3] = 0);
|
||||
return T;
|
||||
}
|
||||
|
||||
// reverse of spintox(H)
|
||||
transmatrix rspintox(const hyperpoint& H) {
|
||||
transmatrix T = Id;
|
||||
ld R = sqrt(H[0] * H[0] + H[1] * H[1]);
|
||||
if(R >= 1e-12) {
|
||||
T[0][0] = +H[0]/R; T[0][1] = -H[1]/R;
|
||||
T[1][0] = +H[1]/R; T[1][1] = +H[0]/R;
|
||||
}
|
||||
return T;
|
||||
transmatrix rspintox(const hyperpoint& H) {
|
||||
#if DIM==2
|
||||
return rspintoc(H, 0, 1);
|
||||
#else
|
||||
transmatrix T1 = spintoc(H, 0, 1);
|
||||
return rspintoc(H, 0, 1) * rspintoc(T1*H, 0, 2);
|
||||
#endif
|
||||
}
|
||||
|
||||
// for H such that H[1] == 0, this matrix pushes H to C0
|
||||
transmatrix pushxto0(const hyperpoint& H) {
|
||||
if(euclid) return eupush(-H[0], -H[1]);
|
||||
transmatrix T = Id;
|
||||
if(sphere) {
|
||||
T[0][0] = +H[2]; T[0][2] = -H[0];
|
||||
T[2][0] = +H[0]; T[2][2] = +H[2];
|
||||
}
|
||||
else {
|
||||
T[0][0] = +H[2]; T[0][2] = -H[0];
|
||||
T[2][0] = -H[0]; T[2][2] = +H[2];
|
||||
}
|
||||
T[0][0] = +H[DIM]; T[0][DIM] = -H[0];
|
||||
T[DIM][0] = curvature() * H[0]; T[DIM][DIM] = +H[DIM];
|
||||
return T;
|
||||
}
|
||||
|
||||
// reverse of pushxto0(H)
|
||||
transmatrix rpushxto0(const hyperpoint& H) {
|
||||
if(euclid) return eupush(H[0], H[1]);
|
||||
transmatrix T = Id;
|
||||
if(sphere) {
|
||||
T[0][0] = +H[2]; T[0][2] = +H[0];
|
||||
T[2][0] = -H[0]; T[2][2] = +H[2];
|
||||
}
|
||||
else {
|
||||
T[0][0] = +H[2]; T[0][2] = +H[0];
|
||||
T[2][0] = +H[0]; T[2][2] = +H[2];
|
||||
}
|
||||
T[0][0] = +H[DIM]; T[0][DIM] = H[0];
|
||||
T[DIM][0] = -curvature() * H[0]; T[DIM][DIM] = +H[DIM];
|
||||
return T;
|
||||
}
|
||||
|
||||
transmatrix ggpushxto0(const hyperpoint& H, ld co) {
|
||||
if(euclid) return eupush(co * H[0], co * H[1] DC(, co * H[2]));
|
||||
transmatrix res = Id;
|
||||
if(sqhypot2(H) < 1e-12) return res;
|
||||
ld fac = (H[DIM]-1) / sqhypot2(H);
|
||||
for(int i=0; i<DIM; i++)
|
||||
for(int j=0; j<DIM; j++)
|
||||
res[i][j] += H[i] * H[j] * fac;
|
||||
|
||||
for(int d=0; d<DIM; d++)
|
||||
res[d][DIM] = co * H[d],
|
||||
res[DIM][d] = -curvature() * co * H[d];
|
||||
res[DIM][DIM] = H[DIM];
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// generalization: H[1] can be non-zero
|
||||
transmatrix gpushxto0(const hyperpoint& H) {
|
||||
if(euclid) return eupush(-H[0], -H[1]);
|
||||
hyperpoint H2 = spintox(H) * H;
|
||||
return rspintox(H) * pushxto0(H2) * spintox(H);
|
||||
return ggpushxto0(H, -1);
|
||||
}
|
||||
|
||||
transmatrix rgpushxto0(const hyperpoint& H) {
|
||||
if(euclid) return eupush(H[0], H[1]);
|
||||
hyperpoint H2 = spintox(H) * H;
|
||||
return rspintox(H) * rpushxto0(H2) * spintox(H);
|
||||
return ggpushxto0(H, 1);
|
||||
}
|
||||
|
||||
|
||||
// fix the matrix T so that it is indeed an isometry
|
||||
// (without using this, imprecision could accumulate)
|
||||
|
||||
void fixmatrix(transmatrix& T) {
|
||||
if(euclid) {
|
||||
for(int x=0; x<2; x++) for(int y=0; y<=x; y++) {
|
||||
for(int x=0; x<DIM; x++) for(int y=0; y<=x; y++) {
|
||||
ld dp = 0;
|
||||
for(int z=0; z<2; z++) dp += T[z][x] * T[z][y];
|
||||
for(int z=0; z<DIM; z++) dp += T[z][x] * T[z][y];
|
||||
|
||||
if(y == x) dp = 1 - sqrt(1/dp);
|
||||
|
||||
for(int z=0; z<2; z++) T[z][x] -= dp * T[z][y];
|
||||
for(int z=0; z<DIM; z++) T[z][x] -= dp * T[z][y];
|
||||
}
|
||||
for(int x=0; x<2; x++) T[2][x] = 0;
|
||||
for(int x=0; x<DIM; x++) T[2][x] = 0;
|
||||
T[2][2] = 1;
|
||||
}
|
||||
else for(int x=0; x<3; x++) for(int y=0; y<=x; y++) {
|
||||
else for(int x=0; x<MDIM; x++) for(int y=0; y<=x; y++) {
|
||||
ld dp = 0;
|
||||
for(int z=0; z<3; z++) dp += T[z][x] * T[z][y] * sig(z);
|
||||
for(int z=0; z<MDIM; z++) dp += T[z][x] * T[z][y] * sig(z);
|
||||
|
||||
if(y == x) dp = 1 - sqrt(sig(x)/dp);
|
||||
|
||||
for(int z=0; z<3; z++) T[z][x] -= dp * T[z][y];
|
||||
for(int z=0; z<MDIM; z++) T[z][x] -= dp * T[z][y];
|
||||
}
|
||||
}
|
||||
|
||||
// show the matrix on screen
|
||||
|
||||
ld det(const transmatrix& T) {
|
||||
#if DIM == 3
|
||||
ld det = 0;
|
||||
for(int i=0; i<3; i++)
|
||||
det += T[0][i] * T[1][(i+1)%3] * T[2][(i+2)%3];
|
||||
for(int i=0; i<3; i++)
|
||||
det -= T[0][i] * T[1][(i+2)%3] * T[2][(i+1)%3];
|
||||
#else
|
||||
ld det = 1;
|
||||
transmatrix M = T;
|
||||
for(int a=0; a<MDIM; a++) {
|
||||
for(int b=a; b<=DIM; b++)
|
||||
if(M[b][a]) {
|
||||
if(b != a)
|
||||
for(int c=a; c<MDIM; c++) tie(M[b][c], M[a][c]) = make_pair(-M[a][c], M[b][c]);
|
||||
break;
|
||||
}
|
||||
if(!M[a][a]) return 0;
|
||||
for(int b=a+1; b<=DIM; b++) {
|
||||
ld co = -M[b][a] / M[a][a];
|
||||
for(int c=a; c<MDIM; c++) M[b][c] += M[a][c] * co;
|
||||
}
|
||||
det *= M[a][a];
|
||||
}
|
||||
#endif
|
||||
return det;
|
||||
}
|
||||
|
||||
@@ -450,6 +472,7 @@ void inverse_error(const transmatrix& T) {
|
||||
transmatrix inverse(const transmatrix& T) {
|
||||
profile_start(7);
|
||||
|
||||
#if DIM == 3
|
||||
ld d = det(T);
|
||||
transmatrix T2;
|
||||
if(d == 0) {
|
||||
@@ -460,6 +483,36 @@ transmatrix inverse(const transmatrix& T) {
|
||||
for(int i=0; i<3; i++)
|
||||
for(int j=0; j<3; j++)
|
||||
T2[j][i] = (T[(i+1)%3][(j+1)%3] * T[(i+2)%3][(j+2)%3] - T[(i+1)%3][(j+2)%3] * T[(i+2)%3][(j+1)%3]) / d;
|
||||
|
||||
#else
|
||||
transmatrix T1 = T;
|
||||
transmatrix T2 = Id;
|
||||
|
||||
for(int a=0; a<MDIM; a++) {
|
||||
for(int b=a; b<=DIM; b++)
|
||||
if(T1[b][a]) {
|
||||
if(b != a)
|
||||
for(int c=0; c<MDIM; c++)
|
||||
tie(T1[b][c], T1[a][c]) = make_pair(T1[a][c], T1[b][c]),
|
||||
tie(T2[b][c], T2[a][c]) = make_pair(T2[a][c], T2[b][c]);
|
||||
break;
|
||||
}
|
||||
if(!T1[a][a]) { inverse_error(T); return Id; }
|
||||
for(int b=a+1; b<=DIM; b++) {
|
||||
ld co = -T1[b][a] / T1[a][a];
|
||||
for(int c=0; c<MDIM; c++) T1[b][c] += T1[a][c] * co, T2[b][c] += T2[a][c] * co;
|
||||
}
|
||||
}
|
||||
|
||||
for(int a=MDIM-1; a>=0; a--) {
|
||||
for(int b=0; b<a; b++) {
|
||||
ld co = -T1[b][a] / T1[a][a];
|
||||
for(int c=0; c<MDIM; c++) T1[b][c] += T1[a][c] * co, T2[b][c] += T2[a][c] * co;
|
||||
}
|
||||
ld co = 1 / T1[a][a];
|
||||
for(int c=0; c<MDIM; c++) T1[a][c] *= co, T2[a][c] *= co;
|
||||
}
|
||||
#endif
|
||||
|
||||
profile_stop(7);
|
||||
return T2;
|
||||
@@ -469,14 +522,14 @@ transmatrix inverse(const transmatrix& T) {
|
||||
double hdist0(const hyperpoint& mh) {
|
||||
switch(cgclass) {
|
||||
case gcHyperbolic:
|
||||
if(mh[2] < 1) return 0;
|
||||
return acosh(mh[2]);
|
||||
if(mh[DIM] < 1) return 0;
|
||||
return acosh(mh[DIM]);
|
||||
case gcEuclid: {
|
||||
ld d = sqrt(mh[0]*mh[0]+mh[1]*mh[1]);
|
||||
ld d = sqhypot2(mh);
|
||||
return d;
|
||||
}
|
||||
case gcSphere: {
|
||||
ld res = mh[2] >= 1 ? 0 : mh[2] <= -1 ? M_PI : acos(mh[2]);
|
||||
ld res = mh[DIM] >= 1 ? 0 : mh[DIM] <= -1 ? M_PI : acos(mh[DIM]);
|
||||
if(elliptic && res > M_PI/2) res = M_PI-res;
|
||||
return res;
|
||||
}
|
||||
@@ -516,31 +569,31 @@ double hdist(const hyperpoint& h1, const hyperpoint& h2) {
|
||||
|
||||
hyperpoint mscale(const hyperpoint& t, double fac) {
|
||||
hyperpoint res;
|
||||
for(int i=0; i<3; i++)
|
||||
for(int i=0; i<MDIM; i++)
|
||||
res[i] = t[i] * fac;
|
||||
return res;
|
||||
}
|
||||
|
||||
transmatrix mscale(const transmatrix& t, double fac) {
|
||||
transmatrix res;
|
||||
for(int i=0; i<3; i++) for(int j=0; j<3; j++)
|
||||
for(int i=0; i<MDIM; i++) for(int j=0; j<MDIM; j++)
|
||||
res[i][j] = t[i][j] * fac;
|
||||
return res;
|
||||
}
|
||||
|
||||
transmatrix xyscale(const transmatrix& t, double fac) {
|
||||
transmatrix res;
|
||||
for(int i=0; i<3; i++) for(int j=0; j<2; j++)
|
||||
for(int i=0; i<MDIM; i++) for(int j=0; j<DIM; j++)
|
||||
res[i][j] = t[i][j] * fac;
|
||||
return res;
|
||||
}
|
||||
|
||||
transmatrix xyzscale(const transmatrix& t, double fac, double facz) {
|
||||
transmatrix res;
|
||||
for(int i=0; i<3; i++) for(int j=0; j<2; j++)
|
||||
for(int i=0; i<MDIM; i++) for(int j=0; j<DIM; j++)
|
||||
res[i][j] = t[i][j] * fac;
|
||||
for(int i=0; i<3; i++)
|
||||
res[i][2] = t[i][2] * facz;
|
||||
for(int i=0; i<MDIM; i++)
|
||||
res[i][DIM] = t[i][DIM] * facz;
|
||||
return res;
|
||||
}
|
||||
|
||||
@@ -554,7 +607,7 @@ transmatrix mzscale(const transmatrix& t, double fac) {
|
||||
transmatrix res = t * inverse(tcentered) * ypush(-fac) * tcentered;
|
||||
fac *= .2;
|
||||
fac += 1;
|
||||
for(int i=0; i<3; i++) for(int j=0; j<3; j++)
|
||||
for(int i=0; i<MDIM; i++) for(int j=0; j<MDIM; j++)
|
||||
res[i][j] = res[i][j] * fac;
|
||||
return res;
|
||||
}
|
||||
@@ -562,7 +615,8 @@ transmatrix mzscale(const transmatrix& t, double fac) {
|
||||
transmatrix pushone() { return euclid ? eupush(1, 0) : xpush(sphere?.5 : 1); }
|
||||
|
||||
bool operator == (hyperpoint h1, hyperpoint h2) {
|
||||
return h1[0] == h2[0] && h1[1] == h2[1] && h1[2] == h2[2];
|
||||
for(int i=0; i<MDIM; i++) if(h1[i] != h2[i]) return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
// rotation matrix in R^3
|
||||
|
||||
Reference in New Issue
Block a user