1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2024-11-23 21:07:17 +00:00

removed the difference between euclid3::coord and array<int,3> -- euclid3::coord is now array<int,3>

This commit is contained in:
Zeno Rogue 2019-11-29 14:34:40 +01:00
parent 90177343a4
commit b904fdde1e
6 changed files with 77 additions and 106 deletions

View File

@ -640,7 +640,7 @@ EX color_t colorize(cell *c, char whichCanvas) {
} }
#endif #endif
else if(euclid) { else if(euclid) {
auto tab = euclid3::getcoord(euclid3::get_ispacemap()[c->master]); auto tab = euclid3::get_ispacemap()[c->master];
for(int a=0; a<3; a++) co[a] = tab[a]; for(int a=0; a<3; a++) co[a] = tab[a];
if(PURE) for(int a=0; a<3; a++) co[a] *= 2; if(PURE) for(int a=0; a<3; a++) co[a] *= 2;
dim = 3; dim = 3;
@ -1498,17 +1498,12 @@ EX void may_place_compass(cell *c) {
#if CAP_CRYSTAL && MAXMDIM >= 4 #if CAP_CRYSTAL && MAXMDIM >= 4
euclid3::coord crystal_to_euclid(coord x) { euclid3::coord crystal_to_euclid(coord x) {
euclid3::coord c = 0; return euclid3::coord(x[0]/2, x[1]/2, x[2]/2);
c += x[0];
c += x[1] * euclid3::COORDMAX;
c += x[2] * euclid3::COORDMAX * euclid3::COORDMAX;
return c/2;
} }
coord euclid3_to_crystal(euclid3::coord x) { coord euclid3_to_crystal(euclid3::coord x) {
coord res; coord res;
auto tmp = euclid3::getcoord(x); for(int i=0; i<3; i++) res[i] = x[i] * 2;
for(int i=0; i<3; i++) res[i] = tmp[i] * 2;
for(int i=3; i<MAXDIM; i++) res[i] = 0; for(int i=3; i<MAXDIM; i++) res[i] = 0;
return res; return res;
} }

View File

@ -15,30 +15,26 @@ namespace hr {
EX namespace euclid3 { EX namespace euclid3 {
#if HDR #if HDR
typedef long long coord; struct coord : array<int, 3> {
constexpr long long COORDMAX = (1<<16); coord() {}
typedef array<coord, 3> axes; coord(int x, int y, int z) { self[0] = x; self[1] = y; self[2] = z; }
typedef array<array<int, 3>, 3> intmatrix; coord& operator += (coord b) { for(int i: {0,1,2}) self[i] += b[i]; return self; }
coord& operator -= (coord b) { for(int i: {0,1,2}) self[i] -= b[i]; return self; }
coord operator + (coord b) const { coord a = self; return a += b; }
coord operator - (coord b) const { coord a = self; return a -= b; }
coord operator -() const { return coord(-self[0], -self[1], -self[2]); }
coord& operator +() { return self; }
const coord& operator +() const { return self; }
coord operator *(int x) const { return coord(x*self[0], x*self[1], x*self[2]); }
friend coord operator *(int x, const coord& y) { return coord(x*y[0], x*y[1], x*y[2]); }
};
typedef array<coord, 3> intmatrix;
#endif #endif
static const axes main_axes = make_array<coord>(1, COORDMAX, COORDMAX * COORDMAX ); EX coord euzero = coord(0,0,0);
EX array<int, 3> getcoord(coord x) { static const intmatrix main_axes = make_array<coord>(coord(1,0,0), coord(0,1,0), coord(0,0,1));
array<int, 3> res;
for(int k=0; k<3; k++) {
int next = x % COORDMAX;
if(next>COORDMAX/2) next -= COORDMAX;
if(next<-COORDMAX/2) next += COORDMAX;
res[k] = next;
x -= next;
x /= COORDMAX;
}
return res;
}
EX coord ascoord(array<int, 3> x) {
return x[0] * main_axes[0] + x[1] * main_axes[1] + x[2] * main_axes[2];
}
EX vector<coord> get_shifttable() { EX vector<coord> get_shifttable() {
static const coord D0 = main_axes[0]; static const coord D0 = main_axes[0];
@ -113,7 +109,7 @@ EX namespace euclid3 {
} }
heptagon *getOrigin() override { heptagon *getOrigin() override {
return get_at(0); return get_at(euzero);
} }
heptagon *get_at(coord at) { heptagon *get_at(coord at) {
@ -128,13 +124,13 @@ EX namespace euclid3 {
h->distance = 0; h->distance = 0;
h->cdata = NULL; h->cdata = NULL;
h->alt = NULL; h->alt = NULL;
auto co = getcoord(at);
if(S7 != 14) if(S7 != 14)
h->zebraval = gmod(co[0] + co[1] * 2 + co[2] * 4, 5); h->zebraval = gmod(at[0] + at[1] * 2 + at[2] * 4, 5);
else else
h->zebraval = co[0] & 1; h->zebraval = at[0] & 1;
spacemap[at] = h; spacemap[at] = h;
ispacemap[h] = at; ispacemap[h] = at;
return h; return h;
} }
} }
@ -145,9 +141,9 @@ EX namespace euclid3 {
bool mirr = false; bool mirr = false;
if(twisted) { if(twisted) {
transmatrix I; transmatrix I;
auto st = getcoord(shifttable[d1]); auto st = shifttable[d1];
twist(ispacemap[parent] + shifttable[d], st, I, mirr); twist(ispacemap[parent] + shifttable[d], st, I, mirr);
for(int i=0; i<S7; i++) if(getcoord(shifttable[i]) == st) d1 = i; for(int i=0; i<S7; i++) if(shifttable[i] == st) d1 = i;
} }
h->c.connect(d1, parent, d, mirr); h->c.connect(d1, parent, d, mirr);
return h; return h;
@ -162,7 +158,7 @@ EX namespace euclid3 {
transmatrix res = tmatrix[i]; transmatrix res = tmatrix[i];
coord id = ispacemap[h]; coord id = ispacemap[h];
id += shifttable[i]; id += shifttable[i];
auto dummy = getcoord(0); auto dummy = euzero;
bool dm = false; bool dm = false;
twist(id, dummy, res, dm); twist(id, dummy, res, dm);
@ -205,14 +201,14 @@ EX namespace euclid3 {
for(int a=-1; a<=1; a++) for(int a=-1; a<=1; a++)
for(int b=-1; b<=1; b++) { for(int b=-1; b<=1; b++) {
if(b && WDIM == 2) continue; if(b && WDIM == 2) continue;
transmatrix T1 = I * eumove((c2 - cs) + a*ascoord(T0[0]) + b*ascoord(T0[1])); transmatrix T1 = I * eumove((c2 - cs) + a*T0[0] + b*T0[1]);
if(hdist0(tC0(T1)) < hdist0(tC0(T))) if(hdist0(tC0(T1)) < hdist0(tC0(T)))
T = T1; T = T1;
} }
auto co = ascoord(T0[WDIM-1]); auto co = T0[WDIM-1];
cs += co; cs += co;
I = I * eumove(co); I = I * eumove(co);
auto dummy = getcoord(0); auto dummy = euzero;
bool dm = false; bool dm = false;
cs = twist(cs, dummy, I, dm); cs = twist(cs, dummy, I, dm);
} }
@ -269,27 +265,25 @@ EX namespace euclid3 {
EX bool pseudohept(cell *c) { EX bool pseudohept(cell *c) {
coord co = cubemap()->ispacemap[c->master]; coord co = cubemap()->ispacemap[c->master];
auto v = getcoord(co);
if(S7 == 12) { if(S7 == 12) {
for(int i=0; i<3; i++) if((v[i] & 1)) return false; for(int i=0; i<3; i++) if((co[i] & 1)) return false;
} }
else { else {
for(int i=0; i<3; i++) if(!(v[i] & 1)) return false; for(int i=0; i<3; i++) if(!(co[i] & 1)) return false;
} }
return true; return true;
} }
EX int dist_alt(cell *c) { EX int dist_alt(cell *c) {
if(specialland == laCamelot) return dist_relative(c) + roundTableRadius(c); if(specialland == laCamelot) return dist_relative(c) + roundTableRadius(c);
coord co = cubemap()->ispacemap[c->master]; auto v = cubemap()->ispacemap[c->master];
auto v = getcoord(co);
if(S7 == 6) return v[2]; if(S7 == 6) return v[2];
else if(S7 == 12) return (v[0] + v[1] + v[2]) / 2; else if(S7 == 12) return (v[0] + v[1] + v[2]) / 2;
else return v[2]/2; else return v[2]/2;
} }
EX bool get_emerald(cell *c) { EX bool get_emerald(cell *c) {
auto v = getcoord(cubemap()->ispacemap[c->master]); auto v = cubemap()->ispacemap[c->master];
int s0 = 0, s1 = 0; int s0 = 0, s1 = 0;
for(int i=0; i<3; i++) { for(int i=0; i<3; i++) {
v[i] = gmod(v[i], 6); v[i] = gmod(v[i], 6);
@ -301,16 +295,14 @@ EX namespace euclid3 {
return s0 > s1; return s0 > s1;
} }
bool cellvalid(coord co) { bool cellvalid(coord v) {
auto v = getcoord(co);
if(S7 == 6) return true; if(S7 == 6) return true;
if(S7 == 12) return (v[0] + v[1] + v[2]) % 2 == 0; if(S7 == 12) return (v[0] + v[1] + v[2]) % 2 == 0;
if(S7 == 14) return v[0] % 2 == v[1] % 2 && v[0] % 2 == v[2] % 2; if(S7 == 14) return v[0] % 2 == v[1] % 2 && v[0] % 2 == v[2] % 2;
return false; return false;
} }
EX int celldistance(coord co) { EX int celldistance(coord v) {
auto v = getcoord(co);
if(S7 == 6) if(S7 == 6)
return abs(v[0]) + abs(v[1]) + abs(v[2]); return abs(v[0]) + abs(v[1]) + abs(v[2]);
else { else {
@ -343,7 +335,7 @@ EX namespace euclid3 {
EX void set_land(cell *c) { EX void set_land(cell *c) {
setland(c, specialland); setland(c, specialland);
auto m = cubemap(); auto m = cubemap();
auto co = getcoord(m->ispacemap[c->master]); auto co = m->ispacemap[c->master];
int dv = 1; int dv = 1;
if(geometry != gCubeTiling) dv = 2; if(geometry != gCubeTiling) dv = 2;
@ -370,14 +362,6 @@ EX namespace euclid3 {
/* quotient spaces */ /* quotient spaces */
intmatrix make_intmatrix(axes a) {
intmatrix T;
T[0] = getcoord(a[0]);
T[1] = getcoord(a[1]);
T[2] = getcoord(a[2]);
return T;
}
int determinant(const intmatrix T) { int determinant(const intmatrix T) {
int det = 0; int det = 0;
for(int i=0; i<3; i++) for(int i=0; i<3; i++)
@ -395,9 +379,9 @@ EX namespace euclid3 {
return T2; return T2;
} }
axes user_axes; intmatrix user_axes;
axes optimal_axes; intmatrix optimal_axes;
axes regular_axes; intmatrix regular_axes;
intmatrix T, T2, T_edit; intmatrix T, T2, T_edit;
EX int det; EX int det;
@ -418,9 +402,8 @@ EX namespace euclid3 {
vector<coord> canonical_seq; vector<coord> canonical_seq;
int canonical_index; int canonical_index;
coord compute_cat(coord co) { coord compute_cat(coord coo) {
auto coo = getcoord(co); coord cat = euzero;
coord cat = 0;
for(int i=0; i<3; i++) { for(int i=0; i<3; i++) {
int val = T2[0][i] * coo[0] + T2[1][i] * coo[1] + T2[2][i] * coo[2]; int val = T2[0][i] * coo[0] + T2[1][i] * coo[1] + T2[2][i] * coo[2];
if(i < WDIM - infinite_dims) val = gmod(val, det); if(i < WDIM - infinite_dims) val = gmod(val, det);
@ -451,16 +434,13 @@ EX namespace euclid3 {
int dim = ginf[g].g.gameplay_dimension; int dim = ginf[g].g.gameplay_dimension;
for(int i=0; i<dim; i++) { user_axes = T0;
user_axes[i] = 0; if(dim == 2) user_axes[2] = euzero;
for(int j=0; j<dim; j++) user_axes[i] += main_axes[j] * T0[i][j];
}
if(dim == 2) user_axes[2] = 0;
optimal_axes = user_axes; optimal_axes = user_axes;
again: again:
for(int i=0; i<dim; i++) if(optimal_axes[i] < 0) optimal_axes[i] = -optimal_axes[i]; for(int i=0; i<dim; i++) if(optimal_axes[i] < euzero) optimal_axes[i] = -optimal_axes[i];
if(optimal_axes[0] < optimal_axes[1]) swap(optimal_axes[0], optimal_axes[1]); if(optimal_axes[0] < optimal_axes[1]) swap(optimal_axes[0], optimal_axes[1]);
if(optimal_axes[1] < optimal_axes[dim]) swap(optimal_axes[1], optimal_axes[dim]); if(optimal_axes[1] < optimal_axes[dim]) swap(optimal_axes[1], optimal_axes[dim]);
if(optimal_axes[0] < optimal_axes[1]) swap(optimal_axes[0], optimal_axes[1]); if(optimal_axes[0] < optimal_axes[1]) swap(optimal_axes[0], optimal_axes[1]);
@ -479,14 +459,14 @@ EX namespace euclid3 {
regular_axes = optimal_axes; regular_axes = optimal_axes;
infinite_dims = dim; infinite_dims = dim;
for(int i=0; i<dim; i++) if(optimal_axes[i]) infinite_dims--; for(int i=0; i<dim; i++) if(optimal_axes[i] != euzero) infinite_dims--;
int attempt = 0; int attempt = 0;
next_attempt: next_attempt:
for(int i=dim-infinite_dims; i<3; i++) for(int i=dim-infinite_dims; i<3; i++)
regular_axes[i] = main_axes[(attempt+i)%3]; regular_axes[i] = main_axes[(attempt+i)%3];
T = make_intmatrix(regular_axes); T = regular_axes;
det = determinant(T); det = determinant(T);
if(det == 0) { if(det == 0) {
attempt++; attempt++;
@ -503,7 +483,7 @@ EX namespace euclid3 {
canonical_hash.clear(); canonical_hash.clear();
canonical_seq.clear(); canonical_seq.clear();
canonical_index = 0; canonical_index = 0;
add_canonical(0); add_canonical(euzero);
twisted = twisted0; twisted = twisted0;
if(dim == 3) { if(dim == 3) {
@ -552,12 +532,12 @@ EX namespace euclid3 {
gp::loc ort1() { return (S3 == 3 ? gp::loc(1, -2) : gp::loc(0, 1)); } gp::loc ort1() { return (S3 == 3 ? gp::loc(1, -2) : gp::loc(0, 1)); }
int diagonal_cross(const array<int, 3>& a, const array<int, 3>& b) { int diagonal_cross(const coord& a, const coord& b) {
return a[0]*b[1] + a[1]*b[2] + a[2]*b[0] return a[0]*b[1] + a[1]*b[2] + a[2]*b[0]
- b[0]*a[1] - b[1]*a[2] - b[2]*a[0]; - b[0]*a[1] - b[1]*a[2] - b[2]*a[0];
}; };
EX coord twist(coord x, array<int, 3>& d, transmatrix& M, bool& mirr) { EX coord twist(coord x, coord& d, transmatrix& M, bool& mirr) {
if(!twisted) return x; if(!twisted) return x;
if(twisted & 16) { if(twisted & 16) {
int period = T0[2][2]; int period = T0[2][2];
@ -566,7 +546,7 @@ EX namespace euclid3 {
RotYZX[1][2] = 1; RotYZX[1][2] = 1;
RotYZX[2][0] = 1; RotYZX[2][0] = 1;
RotYZX[3][3] = 1; RotYZX[3][3] = 1;
auto coo = getcoord(x); auto& coo = x;
while(true) { while(true) {
auto coosum = coo[0] + coo[1] + coo[2]; auto coosum = coo[0] + coo[1] + coo[2];
if(coosum >= 3 * period) { if(coosum >= 3 * period) {
@ -581,17 +561,16 @@ EX namespace euclid3 {
} }
else break; else break;
} }
if(ascoord(T0[0])) { if(T0[0] != euzero) {
int dcro = diagonal_cross(T0[0], T0[1]);
while(diagonal_cross(coo, T0[1]) < 0) for(int i=0; i<3; i++) coo[i] -= T0[0][i]; while(diagonal_cross(coo, T0[1]) < 0) for(int i=0; i<3; i++) coo[i] -= T0[0][i];
while(diagonal_cross(coo, T0[1]) > 0) for(int i=0; i<3; i++) coo[i] += T0[0][i]; while(diagonal_cross(coo, T0[1]) > 0) for(int i=0; i<3; i++) coo[i] += T0[0][i];
while(diagonal_cross(coo, T0[0]) > 0) for(int i=0; i<3; i++) coo[i] -= T0[1][i]; while(diagonal_cross(coo, T0[0]) > 0) for(int i=0; i<3; i++) coo[i] -= T0[1][i];
while(diagonal_cross(coo, T0[0]) < 0) for(int i=0; i<3; i++) coo[i] += T0[1][i]; while(diagonal_cross(coo, T0[0]) < 0) for(int i=0; i<3; i++) coo[i] += T0[1][i];
} }
return ascoord(coo); return coo;
} }
if(WDIM == 3) { if(WDIM == 3) {
auto coo = getcoord(x); auto& coo = x;
while(coo[2] >= T0[2][2]) { while(coo[2] >= T0[2][2]) {
coo[2] -= T0[2][2]; coo[2] -= T0[2][2];
if(twisted & 1) coo[0] *= -1, d[0] *= -1, M = M * MirrorX; if(twisted & 1) coo[0] *= -1, d[0] *= -1, M = M * MirrorX;
@ -606,11 +585,10 @@ EX namespace euclid3 {
} }
for(int i: {0,1}) for(int i: {0,1})
if(T0[i][i]) coo[i] = gmod(coo[i], T0[i][i]); if(T0[i][i]) coo[i] = gmod(coo[i], T0[i][i]);
return ascoord(coo); return coo;
} }
else { else {
auto crd = getcoord(x); gp::loc coo = as_gp(x);
gp::loc coo = gp::loc(crd[0], crd[1]);
gp::loc ort = ort1() * twisted_vec; gp::loc ort = ort1() * twisted_vec;
int dsc = dscalar(twisted_vec, twisted_vec); int dsc = dscalar(twisted_vec, twisted_vec);
gp::loc d0 (d[0], d[1]); gp::loc d0 (d[0], d[1]);
@ -649,7 +627,7 @@ EX namespace euclid3 {
coord canonicalize(coord x) { coord canonicalize(coord x) {
if(twisted) { if(twisted) {
transmatrix M = Id; transmatrix M = Id;
auto dummy = getcoord(0); auto dummy = euzero;
bool dm = false; bool dm = false;
return twist(x, dummy, M, dm); return twist(x, dummy, M, dm);
} }
@ -678,10 +656,10 @@ EX namespace euclid3 {
initquickqueue(); initquickqueue();
transmatrix M = ggmatrix(cwt.at); transmatrix M = ggmatrix(cwt.at);
hyperpoint h0 = M*C0; hyperpoint h0 = M*C0;
hyperpoint ha = M*(eumove(ascoord(T_edit[0])) * C0 - C0) / 2; hyperpoint ha = M*(eumove(T_edit[0]) * C0 - C0) / 2;
hyperpoint hb = M*(eumove(ascoord(T_edit[1])) * C0 - C0) / 2; hyperpoint hb = M*(eumove(T_edit[1]) * C0 - C0) / 2;
if(WDIM == 3) { if(WDIM == 3) {
hyperpoint hc = M*(eumove(ascoord(T_edit[2])) * C0 - C0) / 2; hyperpoint hc = M*(eumove(T_edit[2]) * C0 - C0) / 2;
for(int d:{-1,1}) for(int e:{-1,1}) { for(int d:{-1,1}) for(int e:{-1,1}) {
queueline(h0+d*ha+e*hb-hc, h0+d*ha+e*hb+hc, 0xFFFFFFFF); queueline(h0+d*ha+e*hb-hc, h0+d*ha+e*hb+hc, 0xFFFFFFFF);
queueline(h0+d*hb+e*hc-ha, h0+d*hb+e*hc+ha, 0xFFFFFFFF); queueline(h0+d*hb+e*hc-ha, h0+d*hb+e*hc+ha, 0xFFFFFFFF);
@ -929,7 +907,7 @@ EX namespace euclid3 {
transmatrix T1 = move_matrix(h, i) * move_matrix(h->move(i), j); transmatrix T1 = move_matrix(h, i) * move_matrix(h->move(i), j);
transmatrix T2 = move_matrix(h, k) * move_matrix(h->move(k), l); transmatrix T2 = move_matrix(h, k) * move_matrix(h->move(k), l);
if(!eqmatrix(T1, T2)) { if(!eqmatrix(T1, T2)) {
println(hlog, c, " @ ", getcoord(cubemap()->ispacemap[c->master]), " : ", i, "/", j, "/", k, "/", l, " :: ", T1, " vs ", T2); println(hlog, c, " @ ", cubemap()->ispacemap[c->master], " : ", i, "/", j, "/", k, "/", l, " :: ", T1, " vs ", T2);
exit(1); exit(1);
} }
} }
@ -957,8 +935,7 @@ EX int dcross(gp::loc e1, gp::loc e2) {
} }
EX gp::loc euc2_coordinates(cell *c) { EX gp::loc euc2_coordinates(cell *c) {
auto vec = euclid3::eucmap()->ispacemap[c->master]; auto ans = euclid3::eucmap()->ispacemap[c->master];
auto ans = euclid3::getcoord(vec);
if(BITRUNCATED) if(BITRUNCATED)
return as_gp(ans) * gp::loc(1,1) + (c == c->master->c7 ? gp::loc(0,0) : gp::eudir((c->c.spin(0)+4)%6)); return as_gp(ans) * gp::loc(1,1) + (c == c->master->c7 ? gp::loc(0,0) : gp::eudir((c->c.spin(0)+4)%6));
if(GOLDBERG) { if(GOLDBERG) {
@ -979,14 +956,14 @@ EX cell* at_euc2_coordinates(gp::loc p) {
return cw.at; return cw.at;
} }
EX euclid3::coord as_coord(gp::loc p) { return p.first + p.second * euclid3::COORDMAX; } EX euclid3::coord as_coord(gp::loc p) { return euclid3::coord(p.first, p.second, 0); }
EX gp::loc sdxy() { return as_gp(euclid3::T[1]) * gp::univ_param(); } EX gp::loc sdxy() { return as_gp(euclid3::T[1]) * gp::univ_param(); }
EX pair<bool, string> coord_display(const transmatrix& V, cell *c) { EX pair<bool, string> coord_display(const transmatrix& V, cell *c) {
if(c != c->master->c7) return {false, ""}; if(c != c->master->c7) return {false, ""};
hyperpoint hx = eumove(1) * C0; hyperpoint hx = eumove(euclid3::main_axes[0]) * C0;
hyperpoint hy = eumove(euclid3::COORDMAX) * C0; hyperpoint hy = eumove(euclid3::main_axes[1]) * C0;
hyperpoint hz = WDIM == 2 ? C0 : eumove(euclid3::main_axes[2]) * C0; hyperpoint hz = WDIM == 2 ? C0 : eumove(euclid3::main_axes[2]) * C0;
hyperpoint h = kz(inverse(build_matrix(hx, hy, hz, C03)) * inverse(ggmatrix(cwt.at->master->c7)) * V * C0); hyperpoint h = kz(inverse(build_matrix(hx, hy, hz, C03)) * inverse(ggmatrix(cwt.at->master->c7)) * V * C0);
@ -996,13 +973,12 @@ EX pair<bool, string> coord_display(const transmatrix& V, cell *c) {
return {true, fts(h[0]) + "," + fts(h[1]) }; return {true, fts(h[0]) + "," + fts(h[1]) };
} }
EX gp::loc as_gp(const array<int, 3>& v) { return gp::loc(v[0], v[1]); } EX gp::loc as_gp(const euclid3::coord& v) { return gp::loc(v[0], v[1]); }
EX map<gp::loc, cdata>& get_cdata() { return euclid3::eucmap()->eucdata; } EX map<gp::loc, cdata>& get_cdata() { return euclid3::eucmap()->eucdata; }
EX transmatrix eumove(euclid3::coord vec) { EX transmatrix eumove(euclid3::coord co) {
constexpr double q3 = sqrt(double(3)); constexpr double q3 = sqrt(double(3));
auto co = euclid3::getcoord(vec);
if(WDIM == 3) { if(WDIM == 3) {
return eupush3(co[0], co[1], co[2]); return eupush3(co[0], co[1], co[2]);
} }
@ -1057,8 +1033,8 @@ EX int eudist(gp::loc a, gp::loc b) {
} }
EX int cyldist(gp::loc a, gp::loc b) { EX int cyldist(gp::loc a, gp::loc b) {
a = as_gp(euclid3::getcoord(euclid3::canonicalize(as_coord(a)))); a = as_gp(euclid3::canonicalize(as_coord(a)));
b = as_gp(euclid3::getcoord(euclid3::canonicalize(as_coord(b)))); b = as_gp(euclid3::canonicalize(as_coord(b)));
if(!quotient) return eudist(a, b); if(!quotient) return eudist(a, b);

View File

@ -820,7 +820,7 @@ EX void describeMouseover() {
} }
if(euclid && cheater && WDIM == 3) { if(euclid && cheater && WDIM == 3) {
auto co = euclid3::getcoord(euclid3::get_ispacemap()[c->master]); auto co = euclid3::get_ispacemap()[c->master];
out += " (" + its(co[0]); out += " (" + its(co[0]);
for(int i=1; i<WDIM; i++) out += "," + its(co[i]); for(int i=1; i<WDIM; i++) out += "," + its(co[i]);
out += ")"; out += ")";

View File

@ -268,7 +268,7 @@ EX namespace models {
for(int x=-200; x<=200; x++) { for(int x=-200; x<=200; x++) {
if(y == 0 && x <= 0) continue; if(y == 0 && x <= 0) continue;
auto zero = euclid3::canonicalize(as_coord({x, y})); auto zero = euclid3::canonicalize(as_coord({x, y}));
if(zero == 0) if(zero == euclid3::euzero)
torus_zeros.emplace_back(x, y); torus_zeros.emplace_back(x, y);
} }
sort(torus_zeros.begin(), torus_zeros.end(), [] (const gp::loc p1, const gp::loc p2) { sort(torus_zeros.begin(), torus_zeros.end(), [] (const gp::loc p1, const gp::loc p2) {

View File

@ -968,7 +968,7 @@ void geometry_information::create_wall3d() {
if(GDIM == 3 && euclid && S7 == 12) { if(GDIM == 3 && euclid && S7 == 12) {
auto v = euclid3::get_shifttable(); auto v = euclid3::get_shifttable();
for(int w=0; w<12; w++) { for(int w=0; w<12; w++) {
auto co = euclid3::getcoord(v[w]); auto co = v[w];
vector<int> valid; vector<int> valid;
for(int c=0; c<3; c++) if(co[c]) valid.push_back(c); for(int c=0; c<3; c++) if(co[c]) valid.push_back(c);
int third = 3 - valid[1] - valid[0]; int third = 3 - valid[1] - valid[0];
@ -992,7 +992,7 @@ void geometry_information::create_wall3d() {
}); });
} }
else { else {
auto t = euclid3::getcoord(v[w]); auto t = v[w];
ld x = t[0], y = t[1], z = t[2]; ld x = t[0], y = t[1], z = t[2];
make_wall(w, { make_wall(w, {
hpxy3(x, y/2, 0), hpxy3(x/2, y, 0), hpxy3(0, y, z/2), hpxy3(x, y/2, 0), hpxy3(x/2, y, 0), hpxy3(0, y, z/2),

View File

@ -253,7 +253,7 @@ EX rugpoint *addRugpoint(hyperpoint h, double dist) {
m->valid = false; m->valid = false;
if(euclid && quotient && !bounded) { if(euclid && quotient && !bounded) {
hyperpoint h1 = inverse(models::euclidean_spin) * eumove(euclid3::ascoord(euclid3::T0[1])) * C0; hyperpoint h1 = inverse(models::euclidean_spin) * eumove(euclid3::T0[1]) * C0;
h1 /= sqhypot_d(2, h1); h1 /= sqhypot_d(2, h1);
if(nonorientable) h1 /= 2; if(nonorientable) h1 /= 2;
m->valid = good_shape = true; m->valid = good_shape = true;
@ -597,7 +597,7 @@ EX void buildRug() {
for(int j=0; j<c->type; j++) addTriangle(v, p[j], p[(j+1) % c->type]); for(int j=0; j<c->type; j++) addTriangle(v, p[j], p[(j+1) % c->type]);
if((euclid && quotient) && nonorientable) { if((euclid && quotient) && nonorientable) {
transmatrix T = ggmatrix(c) * eumove(euclid3::ascoord(euclid3::T0[1])); transmatrix T = ggmatrix(c) * eumove(euclid3::T0[1]);
rugpoint *Tv = addRugpoint(T * C0, 0); rugpoint *Tv = addRugpoint(T * C0, 0);
for(int j=0; j<c->type; j++) p[j] = findOrAddRugpoint(T * get_corner_position(c, j), v->dist); for(int j=0; j<c->type; j++) p[j] = findOrAddRugpoint(T * get_corner_position(c, j), v->dist);
for(int j=0; j<c->type; j++) addTriangle(Tv, p[j], p[(j+1) % c->type]); for(int j=0; j<c->type; j++) addTriangle(Tv, p[j], p[(j+1) % c->type]);