1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2025-11-07 01:03:00 +00:00

refactored map functions: ddspin, iddspin, spacedist, spin_angle, virtualRebase[simple], adj

This commit is contained in:
Zeno Rogue
2019-11-14 16:51:50 +01:00
parent 4e534261f0
commit aeaaf7586a
15 changed files with 279 additions and 365 deletions

View File

@@ -69,6 +69,14 @@ EX transmatrix calc_relative_matrix(cell *c2, cell *c1, const hyperpoint& point_
namespace gp { extern gp::local_info draw_li; }
#endif
transmatrix hrmap_standard::adj(heptagon *h, int d) {
transmatrix T = cgi.heptmove[d];
if(h->c.mirror(d)) T = T * Mirror;
int sp = h->c.spin(d);
if(sp) T = T * spin(2*M_PI*sp/S7);
return T;
}
transmatrix hrmap_standard::relative_matrix(cell *c2, cell *c1, const hyperpoint& point_hint) {
heptagon *h1 = c1->master;
@@ -91,64 +99,57 @@ transmatrix hrmap_standard::relative_matrix(cell *c2, cell *c1, const hyperpoint
if(bounded) {
transmatrix T;
ld bestdist = 1e9;
for(int d=0; d<S7; d++) if(h2->move(d)) {
int sp = h2->c.spin(d);
transmatrix S = cgi.heptmove[sp] * spin(2*M_PI*d/S7);
if(h2->c.mirror(d)) S = cgi.heptmove[sp] * Mirror * spin(2*M_PI*d/S7);
if(h2->move(d) == h1) {
for(int d=0; d<S7; d++) {
auto hm = h1->move(d);
if(!hm) continue;
transmatrix S = adj(h1, d);
if(hm == h2) {
transmatrix T1 = gm * S * where;
auto curdist = hdist(tC0(T1), point_hint);
if(curdist < bestdist) T = T1, bestdist = curdist;
}
if(geometry != gMinimal) for(int e=0; e<S7; e++) if(h2->move(d)->move(e) == h1) {
int sp2 = h2->move(d)->c.spin(e);
transmatrix T1 = gm * cgi.heptmove[sp2] * spin(2*M_PI*e/S7) * S * where;
if(geometry != gMinimal) for(int e=0; e<S7; e++) if(hm->move(e) == h2) {
transmatrix T1 = gm * S * adj(hm, e) * where;
auto curdist = hdist(tC0(T1), point_hint);
if(curdist < bestdist) T = T1, bestdist = curdist;
}
}
if(bestdist < 1e8) return T;
}
for(int d=0; d<S7; d++) if(h2->move(d) == h1) {
int sp = h2->c.spin(d);
return gm * cgi.heptmove[sp] * spin(2*M_PI*d/S7) * where;
for(int d=0; d<S7; d++) if(h1->move(d) == h2) {
return gm * adj(h1, d) * where;
}
if(among(geometry, gFieldQuotient, gBring, gMacbeath)) {
int bestdist = 1000000, bestd = 0;
for(int d=0; d<S7; d++) {
int dist = celldistance(h2->cmove(d)->c7, c1);
int dist = celldistance(h1->cmove(d)->c7, h2->c7);
if(dist < bestdist) bestdist = dist, bestd = d;
}
int sp = h2->c.spin(bestd);
where = cgi.heptmove[sp] * spin(2*M_PI*bestd/S7) * where;
h2 = h2->move(bestd);
gm = gm * adj(h1, bestd);
h1 = h1->move(bestd);
}
#if CAP_CRYSTAL
else if(cryst) {
for(int d3=0; d3<S7; d3++) {
auto h3 = h2->cmove(d3);
if(visited.count(h3)) continue;
visited.insert(h3);
int sp3 = h2->c.spin(d3);
transmatrix where3 = cgi.heptmove[sp3] * spin(2*M_PI*d3/S7) * where;
ld dist = crystal::space_distance(h3->c7, c1);
hbdist[dist].emplace_back(h3, where3);
auto hm = h1->cmove(d3);
if(visited.count(hm)) continue;
visited.insert(hm);
ld dist = crystal::space_distance(hm->c7, c2);
hbdist[dist].emplace_back(hm, gm * adj(h1, d3));
}
auto &bestv = hbdist.begin()->second;
tie(h2, where) = bestv.back();
tie(h1, gm) = bestv.back();
bestv.pop_back();
if(bestv.empty()) hbdist.erase(hbdist.begin());
}
#endif
else if(h1->distance < h2->distance) {
int sp = h2->c.spin(0);
where = iadj(h2, 0) * where;
h2 = h2->move(0);
where = cgi.heptmove[sp] * where;
}
else {
int sp = h1->c.spin(0);
gm = gm * adj(h1, 0);
h1 = h1->move(0);
gm = gm * cgi.invheptmove[sp];
}
}
return gm * where;
@@ -169,40 +170,6 @@ EX transmatrix &ggmatrix(cell *c) {
return t;
}
EX transmatrix calc_relative_matrix_help(cell *c, heptagon *h1) {
transmatrix gm = Id;
heptagon *h2 = c->master;
transmatrix where = Id;
if(0);
#if CAP_GP
else if(GOLDBERG && c != c->master->c7) {
auto li = gp::get_local_info(c);
where = cgi.gpdata->Tf[li.last_dir][li.relative.first&31][li.relative.second&31][gmod(li.total_dir, S6)];
}
#endif
else if(BITRUNCATED) for(int d=0; d<S7; d++) if(h2->c7->move(d) == c)
where = cgi.hexmove[d];
// always add to last!
while(h1 != h2) {
for(int d=0; d<S7; d++) if(h1->move(d) == h2) printf("(adj) ");
if(h1->distance < h2->distance) {
int sp = h2->c.spin(0);
printf("A%d ", sp);
h2 = h2->move(0);
where = cgi.heptmove[sp] * where;
}
else {
int sp = h1->c.spin(0);
printf("B%d ", sp);
h1 = h1->move(0);
gm = gm * cgi.invheptmove[sp];
}
}
println(hlog, "OK");
println(hlog, gm * where);
return gm * where;
}
#if HDR
struct horo_distance {
ld a, b;
@@ -288,10 +255,7 @@ void virtualRebase(cell*& base, T& at, bool tohex, const U& check) {
base = hybrid::get_at(w.first, w.second);
return;
}
if(sl2) {
virtualRebase_cell(base, at, check);
return;
}
if((euclid || sphere) && WDIM == 2) {
again:
if(euwrap) for(int i=0; i<6; i++) {
@@ -316,57 +280,7 @@ void virtualRebase(cell*& base, T& at, bool tohex, const U& check) {
return;
}
at = master_relative(base) * at;
base = base->master->c7;
while(true) {
horo_distance currz(check(at));
heptagon *h = base->master;
cell *newbase = NULL;
transmatrix bestV;
if(WDIM == 2 && !binarytiling && !penrose) for(int d=0; d<h->degree(); d++) {
heptspin hs(h, d, false);
heptspin hs2 = hs + wstep;
transmatrix V2 = spin(-hs2.spin*2*M_PI/S7) * cgi.invheptmove[d];
horo_distance newz(check(V2 * at));
if(newz < currz) {
currz = newz;
bestV = V2;
newbase = hs2.at->c7;
}
}
if(newbase) {
base = newbase;
at = bestV * at;
}
else {
if(tohex && BITRUNCATED) for(int d=0; d<base->type; d++) {
cell *c = createMov(base, d);
transmatrix V2 = spin(-base->c.spin(d)*2*M_PI/S6) * cgi.invhexmove[d];
horo_distance newz(check(V2 * at));
if(newz < currz) {
currz = newz;
bestV = V2;
newbase = c;
}
}
if(newbase) {
base = newbase;
at = bestV * at;
}
else at = master_relative(base, true) * at;
if(binarytiling || (tohex && (GOLDBERG || IRREGULAR)) || WDIM == 3 || penrose)
virtualRebase_cell(base, at, check);
break;
}
}
virtualRebase_cell(base, at, check);
}
EX void virtualRebase(cell*& base, transmatrix& at, bool tohex) {
@@ -382,8 +296,7 @@ EX void virtualRebase(cell*& base, hyperpoint& h, bool tohex) {
});
}
// works only in geometries similar to the standard one, and only on heptagons
EX void virtualRebaseSimple(heptagon*& base, transmatrix& at) {
void hrmap_hyperbolic::virtualRebase(heptagon*& base, transmatrix& at) {
while(true) {
@@ -398,7 +311,7 @@ EX void virtualRebaseSimple(heptagon*& base, transmatrix& at) {
for(int d=0; d<S7; d++) {
heptspin hs(h, d, false);
heptspin hs2 = hs + wstep;
transmatrix V2 = spin(-hs2.spin*2*M_PI/S7) * cgi.invheptmove[d] * at;
transmatrix V2 = iadj(h, d) * at;
double newz = V2[LDIM][LDIM];
if(newz < currz) {
currz = newz;
@@ -421,46 +334,37 @@ EX bool no_easy_spin() {
return NONSTDVAR || archimedean || WDIM == 3 || binarytiling || penrose;
}
double hexshiftat(cell *c) {
if(binarytiling) return 0;
if(ctof(c) && S7==6 && S3 == 4 && BITRUNCATED) return cgi.hexshift + 2*M_PI/S7;
if(ctof(c) && (S7==8 || S7 == 4) && S3 == 3 && BITRUNCATED) return cgi.hexshift + 2*M_PI/S7;
if(cgi.hexshift && ctof(c)) return cgi.hexshift;
return 0;
}
EX transmatrix ddspin(cell *c, int d, ld bonus IS(0)) {
if(no_easy_spin()) {
if(hybri) return PIU( ddspin(c, d, bonus) );
transmatrix T = rspintox(tC0(currentmap->adj(c, d)));
if(WDIM == 3) return T * cspin(2, 0, bonus);
return T * spin(bonus);
ld hrmap_standard::spin_angle(cell *c, int d) {
ld hexshift = 0;
if(ctof(c) && S7==6 && S3 == 4 && BITRUNCATED) hexshift = cgi.hexshift + 2*M_PI/S7;
else if(ctof(c) && (S7==8 || S7 == 4) && S3 == 3 && BITRUNCATED) hexshift = cgi.hexshift + 2*M_PI/S7;
else if(cgi.hexshift && ctof(c)) hexshift = cgi.hexshift;
if(IRREGULAR) {
auto id = irr::cellindex[c];
auto& vs = irr::cells[id];
if(d < 0 || d >= c->type) return 0;
auto& p = vs.jpoints[vs.neid[d]];
return -atan2(p[1], p[0]) - hexshift;
}
return spin(displayspin(c, d) + bonus - hexshiftat(c));
else if(masterless)
return - d * 2 * M_PI / c->type - hexshift;
else
return M_PI - d * 2 * M_PI / c->type - hexshift;
}
EX transmatrix iddspin(cell *c, int d, ld bonus IS(0)) {
if(no_easy_spin()) {
if(hybri) return PIU( iddspin(c, d, bonus) );
transmatrix T = spintox(tC0(currentmap->iadj(c, d)));
if(WDIM == 3) return T * cspin(2, 0, bonus);
return T * spin(bonus);
}
return spin(hexshiftat(c) - displayspin(c, d) + bonus);
EX transmatrix ddspin(cell *c, int d, ld bonus IS(0)) { return currentmap->spin_to(c, d, bonus); }
EX transmatrix iddspin(cell *c, int d, ld bonus IS(0)) { return currentmap->spin_from(c, d, bonus); }
EX ld cellgfxdist(cell *c, int d) { return currentmap->spacedist(c, d); }
double hrmap_standard::spacedist(cell *c, int i) {
if(NONSTDVAR) return hrmap::spacedist(c, i);
if(!BITRUNCATED) return cgi.tessf;
if(c->type == S6 && (i&1)) return cgi.hexhexdist;
return cgi.crossf;
}
EX double cellgfxdist(cell *c, int i) {
if(no_easy_spin())
return hdist0(tC0(currentmap->adj(c, i)));
if(euclid) {
if(c->type == 8 && (i&1)) return cgi.crossf * sqrt(2);
return cgi.crossf;
}
return !BITRUNCATED ? cgi.tessf : (c->type == 6 && (i&1)) ? cgi.hexhexdist : cgi.crossf;
}
transmatrix hrmap::adj(cell *c, int i) {
if(no_easy_spin()) return calc_relative_matrix(c->move(i), c, i);
transmatrix hrmap_standard::adj(cell *c, int i) {
if(NONSTDVAR) return calc_relative_matrix(c->cmove(i), c, i);
double d = cellgfxdist(c, i);
transmatrix T = ddspin(c, i) * xpush(d);
if(c->c.mirror(i)) T = T * Mirror;
@@ -469,8 +373,6 @@ transmatrix hrmap::adj(cell *c, int i) {
return T;
}
EX transmatrix cellrelmatrix(cell *c, int i) { return currentmap->adj(c, i); }
EX double randd() { return (rand() + .5) / (RAND_MAX + 1.); }
EX hyperpoint randomPointIn(int t) {
@@ -695,7 +597,7 @@ EX hyperpoint farcorner(cell *c, int i, int which) {
}
#endif
return cellrelmatrix(c, i) * get_corner_position(c->move(i), (cellwalker(c, i) + wstep + (which?-1:2)).spin);
return currentmap->adj(c, i) * get_corner_position(c->move(i), (cellwalker(c, i) + wstep + (which?-1:2)).spin);
}
EX hyperpoint midcorner(cell *c, int i, ld v) {