1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2025-01-11 09:50:34 +00:00

snow visualization added

This commit is contained in:
Zeno Rogue 2020-03-31 20:07:23 +02:00
parent 90895f29ec
commit a2f7c90a19

147
rogueviz/snow.cpp Normal file
View File

@ -0,0 +1,147 @@
#include "../hyper.h"
/** \brief Snowball visualization
*
* This visualization puts small objects ('snowballs') randomly throughout the space.
* It provides a way to visualize the geometry without any tessellation.
*
* Should work for tessellations where every tile is congruent.
*
* The snow_lambda parameter gives the expected number of snowballs per cell.
* (The number in every region has Poisson distribution with mean proportional to its area.)
*
* Not implemented for: product
*
**/
namespace hr {
ld snow_lambda = 1;
bool snow_test = false;
/* a funny glitch */
bool snow_glitch = false;
int snow_shape = 0;
map<cell*, vector<transmatrix> > matrices_at;
hpcshape& shapeid(int i) {
switch(i) {
case 0:
return cgi.shSnowball;
case 1:
return cgi.shHeptaMarker;
case 2:
return cgi.shDisk;
default:
return cgi.shDisk;
}
}
bool draw_snow(cell *c, const transmatrix& V) {
if(!matrices_at.count(c)) {
auto& v = matrices_at[c];
int cnt = 0;
ld prob = randd();
ld poisson = exp(-snow_lambda);
while(cnt < 2*snow_lambda+100) {
if(prob < poisson) break;
prob -= poisson;
cnt++;
poisson *= snow_lambda / cnt;
}
if(snow_test) {
if(c != cwt.at)
cnt = 0;
else {
c->wall = waFloorA;
cnt = snow_lambda;
}
}
if(snow_glitch) {
// in the standard tiling, this is incorrect but fun
for(int t=0; t<cnt; t++) {
hyperpoint h = C0;
h[0] = randd() - .5;
h[1] = randd() - .5;
h[2] = randd() - .5;
h[2] = -h[2];
v.push_back(rgpushxto0(h));
}
}
else if(nonisotropic || bt::in()) {
int co = bt::expansion_coordinate();
ld aer = bt::area_expansion_rate();
for(int t=0; t<cnt; t++) {
hyperpoint h;
// randd() - .5;
for(int a=0; a<3; a++) {
if(a != co || aer == 1)
h[a] = randd() * 2 - 1;
else {
ld r = randd();
h[co] = log(lerp(1, aer, r)) / log(aer) * 2 - 1;
}
}
h = tC0(bt::normalized_at(h));
v.push_back(rgpushxto0(h));
}
}
else {
while(isize(v) < cnt) {
ld maxr = WDIM == 2 ? cgi.rhexf : cgi.corner_bonus;
ld vol = randd() * wvolarea_auto(maxr);
ld r = binsearch(0, maxr, [vol] (ld r) { return wvolarea_auto(r) > vol; });
transmatrix T = random_spin();
hyperpoint h = T * xpush0(r);
cell* c1 = c;
virtualRebase(c1, h);
if(c1 == c)
v.push_back(T * xpush(r));
}
}
}
poly_outline = 0xFF;
for(auto& T: matrices_at[c])
queuepoly(V * T, shapeid(snow_shape), 0xFFFFFFFF).tinf = nullptr;
return false;
}
bool cylanim = false;
auto hchook = addHook(hooks_drawcell, 100, draw_snow)
+ addHook(clearmemory, 40, [] () {
matrices_at.clear();
})
+ addHook(hooks_args, 100, [] {
using namespace arg;
if(0) ;
else if(argis("-snow-lambda")) {
shift_arg_formula(snow_lambda);
}
else if(argis("-snow-shape")) {
shift(); snow_shape = argi();
}
else if(argis("-snow-test")) {
snow_test = true;
}
else if(argis("-snow-glitch")) {
snow_test = true;
}
else return 1;
return 0;
});
}