mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2024-12-24 01:00:25 +00:00
tes mirror tile documented
This commit is contained in:
parent
d44e8b6416
commit
9004fdeee5
13
tessellations/sample/123458_0_8314_a3a12_complex.tes
Normal file
13
tessellations/sample/123458_0_8314_a3a12_complex.tes
Normal file
@ -0,0 +1,13 @@
|
||||
## 123458_0_8314 A3+A12 example (5 vertices, 9 edges)
|
||||
h2.
|
||||
distunit(edge(12,4)/2)
|
||||
let(a3=regangle(1,3))
|
||||
let(a12=regangle(1,12))
|
||||
unittile(a3,a3,a3)
|
||||
unittile(a3,a3,a3)
|
||||
unittile(a12,a12,a12,a12,a12,a12,a12,a12,a12,a12,a12,a12)
|
||||
unittile(a3,a3,a3)
|
||||
unittile(a3,a3,a3)
|
||||
unittile(a12,a12,a12,*4)
|
||||
unittile(a3,a3,a3)
|
||||
conway("(0)(1 11'')(2 1'')(0')(1' 6'')(2' 8'')(0'')(2'' 0''')(3'' 0@6)(4'' 2@6)(5'' 0@4)(7'')(9'' 2@4)(10'' 1''')(2''' 1@5)(1@4 2@5)(0@5 1@6)")
|
11
tessellations/sample/123458_0_8314_a3a12_complex_2.tes
Normal file
11
tessellations/sample/123458_0_8314_a3a12_complex_2.tes
Normal file
@ -0,0 +1,11 @@
|
||||
## 123458_0_8314 A3+A12 example (5 vertices, 9 edges), simplified using mirrors
|
||||
h2.
|
||||
distunit(edge(12,4)/2)
|
||||
let(a3=regangle(1,3))
|
||||
let(a12=regangle(1,12))
|
||||
unittile(a3,a3,a3)
|
||||
unittile(a12,a12,a12,a12,a12,a12,a12,a12,a12,a12,a12,a12,|7)
|
||||
unittile(a3,a3,a3)
|
||||
unittile(a12,a12,a12,*4,|0)
|
||||
unittile(a3,a3,a3,|2)
|
||||
conway("(0)(1 11')(2 1')(0')(2' 0'')(3' 0@4)[9' 1''](2'' 1''')(0''' 1@4)")
|
21
tessellations/sample/12356_0_6329_a3a8c4_complex.tes
Normal file
21
tessellations/sample/12356_0_6329_a3a8c4_complex.tes
Normal file
@ -0,0 +1,21 @@
|
||||
## 12356_0_6329 A3+A8+C4 complex example (8 vertices, 16 edges)
|
||||
h2.
|
||||
distunit(arcmedge(3,3,8,8))
|
||||
let(a3=regangle(1,3))
|
||||
let(a8=regangle(1,8))
|
||||
let(c4=regangle(3,4))
|
||||
unittile(a3,*3)
|
||||
unittile(a3,*3)
|
||||
unittile(a8,a8,a8,a8,a8,a8,a8,a8)
|
||||
unittile(a3,a3,a3)
|
||||
unittile(a3,a3,a3)
|
||||
unittile(a8,a8,a8,a8,a8,a8,a8,a8)
|
||||
unittile(a3,a3,a3)
|
||||
unittile(a3,a3,a3)
|
||||
unittile(pi,c4,pi,pi,c4,pi,*2)
|
||||
unittile(a3,a3,a3)
|
||||
unittile(a3,a3,a3)
|
||||
unittile(a8,a8,a8,a8,a8,a8,a8,a8)
|
||||
unittile(a3,*3)
|
||||
unittile(a3,*3)
|
||||
conway("(0 1'')(0' 3'')(0'' 1''')(2'' 0''')(4'' 2''')(5'' 0@4)(6'' 0@6)(7'' 1@4)(2@4 1@5)(0@5 1@6)(2@5 2@6)(3@5 0@7)(4@5 5@8)(5@5 0@11)(6@5 1@8)(7@5 1@7)(2@7 0@8)(2@8 2@10)(3@8 4@11)(4@8 1@9)(0@9 1@11)(2@9 3@11)(1@10 5@11)(0@10 7@11)(2@11 0@12)(6@11 0@13)")
|
18
tessellations/sample/12356_0_6329_a3a8c4_complex_2.tes
Normal file
18
tessellations/sample/12356_0_6329_a3a8c4_complex_2.tes
Normal file
@ -0,0 +1,18 @@
|
||||
## 12356_0_6329 A3+A8+C4 complex example (8 vertices, 16 edges), simplified using mirrors
|
||||
h2.
|
||||
distunit(arcmedge(3,3,8,8))
|
||||
let(a3=regangle(1,3))
|
||||
let(a8=regangle(1,8))
|
||||
let(c4=regangle(3,4))
|
||||
unittile(a3,*3)
|
||||
unittile(a8,a8,a8,a8,a8,a8,a8,a8,|4)
|
||||
unittile(a3,a3,a3,|0)
|
||||
unittile(a3,a3,a3,|1)
|
||||
unittile(a8,a8,a8,a8,a8,a8,a8,a8,|2)
|
||||
unittile(a3,a3,a3,|0)
|
||||
unittile(a3,a3,a3,|1)
|
||||
unittile(pi,c4,pi,pi,c4,pi,*2,|0)
|
||||
unittile(a3,a3,a3)
|
||||
unittile(a8,a8,a8,a8,a8,a8,a8,a8,|0)
|
||||
unittile(a3,*3)
|
||||
conway("(0 1')(0' 1'')(2' 0'')(5' 0''')(6' 0@5)(2''' 1@4)(0@4 1@5)(3@4 0@6)(4@4 5@7)(5@4 0@9)(2@6 0@7)[2@7 1@8](3@7 4@9)(0@8 1@9)(2@8 3@9)(2@9 0@10)")
|
@ -35,13 +35,19 @@ A typical tes file consists of the following parts:
|
||||
|
||||
Some tessellations include tiles with rotational symmetry. For example, in the standard HyperRogue tiling
|
||||
(bitruncated {7,3}), the heptagonal tiles have 7-fold rotational symmetry, and the hexagonal tiles have 3-fold
|
||||
rotational symmetry. In this case, it is convenient to not give an index to every edge of every tile, but only
|
||||
rotational symmetry. (We mean symmetries not only of the tile itself, but of the whole tiling.)
|
||||
In this case, it is convenient to not give an index to every edge of every tile, but only
|
||||
to the part which repeats (i.e., heptagons have 7 edges of index 0, and hexagons have 3 edges of index 0 and
|
||||
3 edges of index 1).
|
||||
|
||||
Such situation can be defined with e.g. `tile(e0, a0, e1, a1, *3)` (this defines a hexagon with edges e0,e1,e0,e1,e0,e1
|
||||
and angles a0,a1,a0,a1,a0,a1; edges are indexed with 0,1,0,1,0,1).
|
||||
|
||||
For mirror symmetries, use e.g. `tile(e0, a0, e1, a1, e2, a2, |2)`, which means that the tile has mirror symmetry,
|
||||
and edge i is the mirror image of tile 2-i. (For simplicity, you still need to write all the edge lengths and angles
|
||||
in this case, even if mirror symmetry could theoretically be used to infer some of this information.)
|
||||
When both rotational and mirror symmetries exist, put `*` before `|`.
|
||||
|
||||
You can also use `repeat(tile_index, qty)` to make every edge index of tile tile_index repeat qty times, for example,
|
||||
`tile(e0, a0, e1, a1, e2, a2) repeat(0, 3)` has the same effect as tile(e0, a0, e1, a1, *3).
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user