mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2024-12-24 09:00:34 +00:00
refactored gethyper
This commit is contained in:
parent
5ba198f3a6
commit
8e7abf6292
2
hyper.h
2
hyper.h
@ -1051,6 +1051,8 @@ struct videopar {
|
||||
int use_smart_range; // 0 = distance-based, 1 = model-based, 2 = model-based and generate
|
||||
ld smart_range_detail;// minimum visible cell for modes 1 and 2
|
||||
int cells_drawn_limit;
|
||||
|
||||
ld skiprope;
|
||||
};
|
||||
|
||||
extern videopar vid;
|
||||
|
804
hypgraph.cpp
804
hypgraph.cpp
@ -20,6 +20,53 @@ void camrotate(ld& hx, ld& hy) {
|
||||
hx = ux / uz, hy = uy / uz;
|
||||
}
|
||||
|
||||
hyperpoint perspective_to_space(hyperpoint h, ld alpha = vid.alpha, eGeometryClass geo = ginf[geometry].cclass);
|
||||
|
||||
hyperpoint dhp(ld x, ld y, ld z) { return hpxyz(x, y, z); }
|
||||
|
||||
hyperpoint perspective_to_space(hyperpoint h, ld alpha, eGeometryClass gc) {
|
||||
ld hx = h[0], hy = h[1];
|
||||
|
||||
if(gc == gcEuclid)
|
||||
return hpxy(hx * (1 + alpha), hy * (1 + alpha));
|
||||
|
||||
ld hr = hx*hx+hy*hy;
|
||||
|
||||
if(hr > .9999 && gc == gcHyperbolic) return Hypc;
|
||||
|
||||
ld A, B, C;
|
||||
|
||||
ld curv = gc == gcSphere ? 1 : -1;
|
||||
|
||||
A = 1+curv*hr;
|
||||
B = 2*hr*vid.alpha*-curv;
|
||||
C = 1 - curv*hr*vid.alpha*vid.alpha;
|
||||
|
||||
B /= A; C /= A;
|
||||
|
||||
ld rootsign = 1;
|
||||
if(gc == gcSphere && vid.alpha > 1) rootsign = -1;
|
||||
|
||||
ld hz = B / 2 + rootsign * sqrt(C + B*B/4);
|
||||
|
||||
hyperpoint H;
|
||||
H[0] = hx * (hz+vid.alpha);
|
||||
H[1] = hy * (hz+vid.alpha);
|
||||
H[2] = hz;
|
||||
|
||||
return H;
|
||||
}
|
||||
|
||||
hyperpoint space_to_perspective(hyperpoint z, ld alpha = vid.alpha);
|
||||
|
||||
hyperpoint space_to_perspective(hyperpoint z, ld alpha) {
|
||||
ld s = 1 / (alpha + z[2]);
|
||||
z[0] *= s;
|
||||
z[1] *= s;
|
||||
z[2] = 0;
|
||||
return z;
|
||||
}
|
||||
|
||||
hyperpoint gethyper(ld x, ld y) {
|
||||
|
||||
ld hx = (x - vid.xcenter) / vid.radius;
|
||||
@ -32,45 +79,7 @@ hyperpoint gethyper(ld x, ld y) {
|
||||
|
||||
if(vid.camera_angle) camrotate(hx, hy);
|
||||
|
||||
if(euclid)
|
||||
return hpxy(hx * (1 + vid.alpha), hy * (1 + vid.alpha));
|
||||
|
||||
ld hr = hx*hx+hy*hy;
|
||||
|
||||
if(hr > .9999 && !sphere) return Hypc;
|
||||
|
||||
// hz*hz-(hx/(hz+alpha))^2 - (hy/(hz+alpha))^2 =
|
||||
|
||||
// hz*hz-hr*(hz+alpha)^2 == 1
|
||||
// hz*hz - hr*hr*hz*Hz
|
||||
|
||||
|
||||
ld A, B, C;
|
||||
|
||||
ld curv = sphere ? 1 : -1;
|
||||
|
||||
A = 1+curv*hr;
|
||||
B = 2*hr*vid.alpha*-curv;
|
||||
C = 1 - curv*hr*vid.alpha*vid.alpha;
|
||||
|
||||
// Az^2 - Bz = C
|
||||
B /= A; C /= A;
|
||||
|
||||
// z^2 - Bz = C
|
||||
// z^2 - Bz + (B^2/4) = C + (B^2/4)
|
||||
// z = (B/2) + sqrt(C + B^2/4)
|
||||
|
||||
ld rootsign = 1;
|
||||
if(sphere && vid.alpha > 1) rootsign = -1;
|
||||
|
||||
ld hz = B / 2 + rootsign * sqrt(C + B*B/4);
|
||||
|
||||
hyperpoint H;
|
||||
H[0] = hx * (hz+vid.alpha);
|
||||
H[1] = hy * (hz+vid.alpha);
|
||||
H[2] = hz;
|
||||
|
||||
return H;
|
||||
return perspective_to_space(hpxyz(hx, hy, 0));
|
||||
}
|
||||
|
||||
void ballmodel(hyperpoint& ret, double alpha, double d, double zl) {
|
||||
@ -100,416 +109,417 @@ void apply_depth(hyperpoint &f, ld z) {
|
||||
}
|
||||
}
|
||||
|
||||
bool hypot_zlev(bool zlev_used, ld& d, ld zlev, ld& df, ld& zf, ld &z) {
|
||||
if(!zlev_used) {
|
||||
bool hypot_zlev(ld zlev, ld& d, ld& df, ld& zf) {
|
||||
if(zlev == 1) {
|
||||
df = 1; zf = 0;
|
||||
return false;
|
||||
}
|
||||
else {
|
||||
// (0,0,1) -> (0, sin z, cos z) -> (sin d cos z, sin z, cos d cos z)
|
||||
ld z = geom3::factor_to_lev(zlev);
|
||||
|
||||
ld tz = sin_auto(z);
|
||||
ld td = sin_auto(abs(d)) * cos_auto(z);
|
||||
ld h = hypot(td, tz);
|
||||
zf = tz / h, df = td / h;
|
||||
|
||||
if(d > 0)
|
||||
d = hypot_auto(d, z);
|
||||
else
|
||||
d = -hypot_auto(d, z);
|
||||
zf = tz / h, df = td / h;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
bool hypot_zlev(bool zlev_used, ld& d, ld zlev, ld& df, ld& zf) {
|
||||
ld z;
|
||||
return hypot_zlev(zlev_used, d, zlev, df, zf, z);
|
||||
}
|
||||
|
||||
int twopoint_sphere_flips;
|
||||
bool twopoint_do_flips;
|
||||
|
||||
void applymodel(hyperpoint H, hyperpoint& ret) {
|
||||
|
||||
ld tz = euclid ? (1+vid.alpha) : vid.alpha+H[2];
|
||||
if(tz < BEHIND_LIMIT && tz > -BEHIND_LIMIT) tz = BEHIND_LIMIT;
|
||||
|
||||
if(pmodel == mdUnchanged) {
|
||||
for(int i=0; i<3; i++) ret[i] = H[i] / vid.radius;
|
||||
return;
|
||||
}
|
||||
|
||||
if(pmodel == mdBall) {
|
||||
ld zlev = zlevel(H);
|
||||
using namespace hyperpoint_vec;
|
||||
H = H / zlev;
|
||||
|
||||
ld zl = geom3::depth-geom3::factor_to_lev(zlev);
|
||||
double alpha = atan2(H[1], H[0]);
|
||||
double d = hdist0(H);
|
||||
|
||||
ballmodel(ret, alpha, d, zl);
|
||||
ghcheck(ret,H);
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
if(pmodel == mdHemisphere) {
|
||||
using namespace hyperpoint_vec;
|
||||
|
||||
switch(cgclass) {
|
||||
case gcHyperbolic: {
|
||||
ld zl = zlevel(H);
|
||||
ret = H / H[2];
|
||||
ret[2] = sqrt(1 - sqhypot2(ret));
|
||||
ret = ret * (1 + (zl - 1) * ret[2]);
|
||||
break;
|
||||
}
|
||||
|
||||
case gcEuclid: {
|
||||
// stereographic projection to a sphere
|
||||
auto hd = hdist0(H) / vid.euclid_to_sphere;
|
||||
if(hd == 0) ret = hpxyz(0, 0, -1);
|
||||
else {
|
||||
ld x = 2 * hd / (1 + hd * hd);
|
||||
ld y = x / hd;
|
||||
ret = H * x / hd / vid.euclid_to_sphere;
|
||||
ret[2] = (1 - y);
|
||||
ret = ret * (1 + (H[2]-1) * y / vid.euclid_to_sphere);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
case gcSphere: {
|
||||
ret = H;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
swap(ret[1], ret[2]);
|
||||
|
||||
conformal::apply_ball(ret[2], ret[1]);
|
||||
|
||||
ghcheck(ret, H);
|
||||
return;
|
||||
}
|
||||
|
||||
if(pmodel == mdHyperboloidFlat) {
|
||||
H[2] += vid.alpha;
|
||||
H[0] /= H[2];
|
||||
H[1] /= H[2];
|
||||
H[2] = 1 - vid.alpha;
|
||||
|
||||
ret[0] = H[0] / 3;
|
||||
ret[1] = (1 - H[2]) / 3;
|
||||
ret[2] = H[1] / 3;
|
||||
|
||||
conformal::apply_ball(ret[2], ret[1]);
|
||||
ghcheck(ret,H);
|
||||
return;
|
||||
}
|
||||
|
||||
if(pmodel == mdHyperboloid) {
|
||||
ld& tz = conformal::top_z;
|
||||
if(H[2] > tz) {
|
||||
ld scale = sqrt(tz*tz-1) / hypot(H[0], H[1]);
|
||||
H[0] *= scale;
|
||||
H[1] *= scale;
|
||||
H[2] = tz;
|
||||
}
|
||||
|
||||
ret[0] = H[0] / 3;
|
||||
ret[1] = (1 - H[2]) / 3;
|
||||
ret[2] = H[1] / 3;
|
||||
|
||||
conformal::apply_ball(ret[2], ret[1]);
|
||||
ghcheck(ret,H);
|
||||
return;
|
||||
}
|
||||
|
||||
if(pmodel == mdDisk) {
|
||||
|
||||
if(!vid.camera_angle) {
|
||||
ret[0] = H[0] / tz;
|
||||
ret[1] = H[1] / tz;
|
||||
ret[2] = vid.xres * stereo::eyewidth() / 2 / vid.radius - stereo::ipd / tz / 2;
|
||||
}
|
||||
else {
|
||||
ld tx = H[0];
|
||||
ld ty = H[1];
|
||||
ld cam = vid.camera_angle * M_PI / 180;
|
||||
GLfloat cc = cos(cam);
|
||||
GLfloat ss = sin(cam);
|
||||
ld ux = tx, uy = ty * cc - ss * tz, uz = tz * cc + ss * ty;
|
||||
ret[0] = ux / uz;
|
||||
ret[1] = uy / uz;
|
||||
ret[2] = vid.xres * stereo::eyewidth() / 2 / vid.radius - stereo::ipd / uz / 2;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if(pmodel == mdFisheye) {
|
||||
ret[0] = H[0] / tz;
|
||||
ret[1] = H[1] / tz;
|
||||
ld hypot = sqrt(1 + ret[0]*ret[0] + ret[1]*ret[1]);
|
||||
ret[0] /= hypot;
|
||||
ret[1] /= hypot;
|
||||
ghcheck(ret, H);
|
||||
return;
|
||||
}
|
||||
|
||||
ld zlev = 1;
|
||||
bool zlev_used = false;
|
||||
ld find_zlev(hyperpoint& H) {
|
||||
|
||||
if(wmspatial || mmspatial) {
|
||||
zlev = zlevel(H);
|
||||
ld zlev = zlevel(H);
|
||||
using namespace hyperpoint_vec;
|
||||
zlev_used = !((zlev > 1-1e-6 && zlev < 1+1e-6));
|
||||
if(zlev_used) H /= zlev;
|
||||
if(zlev > 1-1e-6 && zlev < 1+1e-6) return 1;
|
||||
H /= zlev;
|
||||
return zlev;
|
||||
}
|
||||
|
||||
if(pmodel == mdBand && conformal::model_transition != 1) {
|
||||
ld& mt = conformal::model_transition;
|
||||
return 1;
|
||||
}
|
||||
|
||||
ld x0, y0;
|
||||
x0 = H[0] / tz;
|
||||
y0 = H[1] / tz;
|
||||
ld get_tz(hyperpoint H) {
|
||||
ld tz = euclid ? (1+vid.alpha) : vid.alpha+H[2];
|
||||
if(tz < BEHIND_LIMIT && tz > -BEHIND_LIMIT) tz = BEHIND_LIMIT;
|
||||
return tz;
|
||||
}
|
||||
|
||||
conformal::apply_orientation(x0, y0);
|
||||
ld atan2(hyperpoint h) {
|
||||
return atan2(h[1], h[0]);
|
||||
}
|
||||
|
||||
x0 += 1;
|
||||
double rad = x0*x0 + y0*y0;
|
||||
y0 /= rad;
|
||||
x0 /= rad;
|
||||
x0 -= .5;
|
||||
template<class T> void makeband(hyperpoint H, hyperpoint& ret, const T& f) {
|
||||
ld zlev = find_zlev(H);
|
||||
conformal::apply_orientation(H[0], H[1]);
|
||||
|
||||
ld phi = atan2(y0, x0);
|
||||
ld r = hypot(x0, y0);
|
||||
|
||||
r = pow(r, 1 - mt);
|
||||
phi *= (1 - mt);
|
||||
ret[0] = r * cos(phi);
|
||||
ret[1] = r * sin(phi);
|
||||
ret[2] = 0;
|
||||
|
||||
ret[0] -= pow(0.5, 1-mt);
|
||||
ret[0] /= -(1-mt) * M_PI / 2;
|
||||
ret[1] /= (1-mt) * M_PI / 2;
|
||||
|
||||
conformal::apply_orientation(ret[1], ret[0]);
|
||||
ghcheck(ret,H);
|
||||
return;
|
||||
ld x, y, yf, zf=0;
|
||||
y = asin_auto(H[1]);
|
||||
x = asin_auto_clamp(H[0] / cos_auto(y));
|
||||
if(sphere) {
|
||||
if(H[2] < 0 && x > 0) x = M_PI - x;
|
||||
else if(H[2] < 0 && x <= 0) x = -M_PI - x;
|
||||
}
|
||||
hypot_zlev(zlev, y, yf, zf);
|
||||
|
||||
if(pmodel == mdTwoPoint || mdBandAny() || pmodel == mdSinusoidal) {
|
||||
// map to plane
|
||||
if(false) {
|
||||
auto p = vid.twopoint_param;
|
||||
ld dleft = hdist(H, xpush0(-p));
|
||||
ld dright = hdist(H, xpush0(p));
|
||||
ld yf = 1, zf = 0;
|
||||
if(zlev_used) {
|
||||
ld y_orig = asin_auto(H[1]);
|
||||
ld z;
|
||||
hypot_zlev(true, y_orig, zlev, yf, zf, z);
|
||||
dleft = hypot_auto(dleft, z);
|
||||
dright = hypot_auto(dright, z);
|
||||
}
|
||||
ld x = (dright*dright-dleft*dleft) / 4 / p;
|
||||
ld y = sqrt(dleft * dleft - (x-p)*(x-p) + 1e-9);
|
||||
x = -x;
|
||||
ret = hpxyz(x/M_PI, y*(H[1]<0?-1:1)*yf/M_PI, 0);
|
||||
if(zlev_used && stereo::active())
|
||||
apply_depth(ret, y * zf / M_PI);
|
||||
f(x, y);
|
||||
|
||||
ld yzf = y * zf; y *= yf;
|
||||
conformal::apply_orientation(y, x);
|
||||
ret = hpxyz(x / M_PI, y / M_PI, 0);
|
||||
if(zlev != 1 && stereo::active())
|
||||
apply_depth(ret, yzf / M_PI);
|
||||
return;
|
||||
}
|
||||
|
||||
void band_conformal(ld& x, ld& y) {
|
||||
switch(cgclass) {
|
||||
case gcSphere:
|
||||
y = atanh(sin(y));
|
||||
x *= 2; y *= 2;
|
||||
break;
|
||||
case gcHyperbolic:
|
||||
y = 2 * atan(tanh(y/2));
|
||||
x *= 2; y *= 2;
|
||||
break;
|
||||
case gcEuclid:
|
||||
// y = y;
|
||||
y *= 2; x *= 2;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void make_twopoint(ld& x, ld& y) {
|
||||
auto p = vid.twopoint_param;
|
||||
ld dleft = hypot_auto(x-p, y);
|
||||
ld dright = hypot_auto(x+p, y);
|
||||
if(sphere) {
|
||||
int tss = twopoint_sphere_flips;
|
||||
if(tss&1) { tss--;
|
||||
dleft = 2*M_PI - 2*p - dleft;
|
||||
dright = 2*M_PI - 2*p - dright;
|
||||
swap(dleft, dright);
|
||||
y = -y;
|
||||
}
|
||||
else {
|
||||
while(tss) { tss -= 2;
|
||||
dleft = 2*M_PI - 4*p + dleft;
|
||||
dright = 2*M_PI - 4*p + dright;
|
||||
}
|
||||
}
|
||||
x = (dright*dright-dleft*dleft) / 4 / p;
|
||||
y = (y>0?1:-1) * sqrt(dleft * dleft - (x-p)*(x-p) + 1e-9);
|
||||
}
|
||||
|
||||
void applymodel(hyperpoint H, hyperpoint& ret) {
|
||||
|
||||
using namespace hyperpoint_vec;
|
||||
|
||||
switch(pmodel) {
|
||||
case mdUnchanged:
|
||||
ret = H / vid.radius;
|
||||
return;
|
||||
|
||||
case mdBall: {
|
||||
ld zlev = find_zlev(H);
|
||||
|
||||
ld zl = geom3::depth-geom3::factor_to_lev(zlev);
|
||||
|
||||
ballmodel(ret, atan2(H), hdist0(H), zl);
|
||||
break;
|
||||
}
|
||||
|
||||
case mdDisk: {
|
||||
ld tz = get_tz(H);
|
||||
if(!vid.camera_angle) {
|
||||
ret[0] = H[0] / tz;
|
||||
ret[1] = H[1] / tz;
|
||||
ret[2] = vid.xres * stereo::eyewidth() / 2 / vid.radius - stereo::ipd / tz / 2;
|
||||
}
|
||||
else {
|
||||
ld tx = H[0];
|
||||
ld ty = H[1];
|
||||
ld cam = vid.camera_angle * M_PI / 180;
|
||||
GLfloat cc = cos(cam);
|
||||
GLfloat ss = sin(cam);
|
||||
ld ux = tx, uy = ty * cc - ss * tz, uz = tz * cc + ss * ty;
|
||||
ret[0] = ux / uz;
|
||||
ret[1] = uy / uz;
|
||||
ret[2] = vid.xres * stereo::eyewidth() / 2 / vid.radius - stereo::ipd / uz / 2;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
case mdHalfplane: {
|
||||
// Poincare to half-plane
|
||||
|
||||
ld zlev = find_zlev(H);
|
||||
H = space_to_perspective(H);
|
||||
|
||||
conformal::apply_orientation(H[0], H[1]);
|
||||
|
||||
ld x, y, yf, zf=0;
|
||||
y = asin_auto(H[1]);
|
||||
x = asin_auto_clamp(H[0] / cos_auto(y));
|
||||
if(sphere) {
|
||||
if(H[2] < 0 && x > 0) x = M_PI - x;
|
||||
else if(H[2] < 0 && x <= 0) x = -M_PI - x;
|
||||
}
|
||||
hypot_zlev(zlev_used, y, zlev, yf, zf);
|
||||
H[1] += 1;
|
||||
double rad = sqhypot2(H);
|
||||
H /= -rad;
|
||||
H[1] += .5;
|
||||
|
||||
switch(pmodel) {
|
||||
case mdTwoPoint: {
|
||||
auto p = vid.twopoint_param;
|
||||
ld dleft = hypot_auto(x-p, y);
|
||||
ld dright = hypot_auto(x+p, y);
|
||||
if(sphere) {
|
||||
int tss = twopoint_sphere_flips;
|
||||
if(tss&1) { tss--;
|
||||
dleft = 2*M_PI - 2*p - dleft;
|
||||
dright = 2*M_PI - 2*p - dright;
|
||||
swap(dleft, dright);
|
||||
y = -y;
|
||||
}
|
||||
while(tss) { tss -= 2;
|
||||
dleft = 2*M_PI - 4*p + dleft;
|
||||
dright = 2*M_PI - 4*p + dright;
|
||||
}
|
||||
}
|
||||
x = (dright*dright-dleft*dleft) / 4 / p;
|
||||
y = (y>0?1:-1) * sqrt(dleft * dleft - (x-p)*(x-p) + 1e-9);
|
||||
conformal::apply_orientation(H[0], H[1]);
|
||||
|
||||
H *= conformal::halfplane_scale;
|
||||
|
||||
ret[0] = -conformal::osin - H[0];
|
||||
if(zlev != 1) {
|
||||
if(abs(conformal::ocos) > 1e-5)
|
||||
H[1] = H[1] * pow(zlev, conformal::ocos);
|
||||
if(abs(conformal::ocos) > 1e-5 && conformal::osin)
|
||||
H[1] += H[0] * conformal::osin * (pow(zlev, conformal::ocos) - 1) / conformal::ocos;
|
||||
else if(conformal::osin)
|
||||
H[1] += H[0] * conformal::osin * log(zlev);
|
||||
}
|
||||
ret[1] = conformal::ocos + H[1];
|
||||
ret[2] = 0;
|
||||
if(zlev != 1 && stereo::active())
|
||||
apply_depth(ret, -H[1] * geom3::factor_to_lev(zlev));
|
||||
break;
|
||||
}
|
||||
|
||||
case mdHemisphere: {
|
||||
|
||||
switch(cgclass) {
|
||||
case gcHyperbolic: {
|
||||
ld zl = zlevel(H);
|
||||
ret = H / H[2];
|
||||
ret[2] = sqrt(1 - sqhypot2(ret));
|
||||
ret = ret * (1 + (zl - 1) * ret[2]);
|
||||
break;
|
||||
}
|
||||
case mdBand: {
|
||||
switch(cgclass) {
|
||||
case gcSphere:
|
||||
y = atanh(sin(y));
|
||||
x *= 2; y *= 2;
|
||||
break;
|
||||
case gcHyperbolic:
|
||||
y = 2 * atan(tanh(y/2));
|
||||
x *= 2; y *= 2;
|
||||
break;
|
||||
case gcEuclid:
|
||||
// y = y;
|
||||
y *= 2; x *= 2;
|
||||
break;
|
||||
|
||||
case gcEuclid: {
|
||||
// stereographic projection to a sphere
|
||||
auto hd = hdist0(H) / vid.euclid_to_sphere;
|
||||
if(hd == 0) ret = hpxyz(0, 0, -1);
|
||||
else {
|
||||
ld x = 2 * hd / (1 + hd * hd);
|
||||
ld y = x / hd;
|
||||
ret = H * x / hd / vid.euclid_to_sphere;
|
||||
ret[2] = (1 - y);
|
||||
ret = ret * (1 + (H[2]-1) * y / vid.euclid_to_sphere);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case mdBandEquiarea: {
|
||||
y = sin_auto(y);
|
||||
|
||||
case gcSphere: {
|
||||
ret = H;
|
||||
break;
|
||||
}
|
||||
case mdSinusoidal: {
|
||||
x *= cos_auto(y);
|
||||
break;
|
||||
}
|
||||
case mdBandEquidistant: {
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
printf("unknown model\n");
|
||||
}
|
||||
}
|
||||
ld yzf = y * zf; y *= yf;
|
||||
conformal::apply_orientation(y, x);
|
||||
ret = hpxyz(x / M_PI, y / M_PI, 0);
|
||||
if(zlev_used && stereo::active())
|
||||
apply_depth(ret, yzf / M_PI);
|
||||
|
||||
swap(ret[1], ret[2]);
|
||||
|
||||
conformal::apply_ball(ret[2], ret[1]);
|
||||
|
||||
break;
|
||||
}
|
||||
ghcheck(ret, H);
|
||||
return;
|
||||
}
|
||||
|
||||
if(mdAzimuthalEqui()) {
|
||||
ld rad = sqrt(H[0] * H[0] + H[1] * H[1]);
|
||||
if(rad == 0) rad = 1;
|
||||
ld d = hdist0(H);
|
||||
ld yf, zf;
|
||||
hypot_zlev(zlev_used, d, zlev, yf, zf);
|
||||
case mdHyperboloidFlat:
|
||||
case mdHyperboloid: {
|
||||
|
||||
// 4 pi / 2pi = M_PI
|
||||
if(pmodel == mdHyperboloid) {
|
||||
ld& topz = conformal::top_z;
|
||||
if(H[2] > topz) {
|
||||
ld scale = sqrt(topz*topz-1) / hypot2(H);
|
||||
H *= scale;
|
||||
H[2] = topz;
|
||||
}
|
||||
}
|
||||
else {
|
||||
H = space_to_perspective(H, vid.alpha);
|
||||
H[2] = 1 - vid.alpha;
|
||||
}
|
||||
|
||||
if(pmodel == 6 && sphere)
|
||||
d = sqrt(2*(1 - cos(d))) * M_PI / 2;
|
||||
else if(pmodel == 6 && !euclid)
|
||||
d = sqrt(2*(cosh(d) - 1)) / 1.5;
|
||||
ret[0] = d * yf * H[0] / rad / M_PI;
|
||||
ret[1] = d * yf * H[1] / rad / M_PI;
|
||||
ret[2] = 0;
|
||||
if(zlev_used && stereo::active())
|
||||
apply_depth(ret, d * zf / M_PI);
|
||||
ghcheck(ret,H);
|
||||
ret[0] = H[0] / 3;
|
||||
ret[1] = (1 - H[2]) / 3;
|
||||
ret[2] = H[1] / 3;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
tz = H[2]+vid.alpha;
|
||||
|
||||
if(pmodel == mdPolygonal || pmodel == mdPolynomial) {
|
||||
|
||||
conformal::apply_orientation(H[0], H[1]);
|
||||
|
||||
pair<long double, long double> p = polygonal::compute(H[0]/tz, H[1]/tz);
|
||||
|
||||
conformal::apply_orientation(p.second, p.first);
|
||||
ret[0] = p.first;
|
||||
ret[1] = p.second;
|
||||
ret[2] = 0;
|
||||
ghcheck(ret,H);
|
||||
return;
|
||||
}
|
||||
|
||||
if(among(pmodel, mdJoukowsky, mdJoukowskyInverted)) {
|
||||
ld x0, y0;
|
||||
x0 = H[0] / tz;
|
||||
y0 = H[1] / tz;
|
||||
conformal::apply_orientation(x0, y0);
|
||||
ld r = hypot(x0, y0);
|
||||
ld c = x0 / r;
|
||||
ld s = y0 / r;
|
||||
ld& mt = conformal::model_transition;
|
||||
ld a = 1 - .5 * mt, b = .5 * mt;
|
||||
swap(a, b);
|
||||
|
||||
ret[0] = (a * r + b/r) * c / 2;
|
||||
ret[1] = (a * r - b/r) * s / 2;
|
||||
ret[2] = 0;
|
||||
|
||||
if(pmodel == mdJoukowskyInverted) {
|
||||
ld r2 = sqhypot2(ret);
|
||||
ret[0] = ret[0] / r2;
|
||||
ret[1] = -ret[1] / r2;
|
||||
conformal::apply_orientation(ret[1], ret[0]);
|
||||
|
||||
/*
|
||||
|
||||
ret[0] += 1;
|
||||
ld alpha = atan2(ret[1], ret[0]);
|
||||
ld mod = hypot(ret[0], ret[1]);
|
||||
// ret[0] = cos(alpha/2) * sqrt(mod);
|
||||
// ret[1] = sin(alpha/2) * sqrt(mod);
|
||||
ret[0] = alpha;
|
||||
ret[1] = log(mod); */
|
||||
conformal::apply_ball(ret[2], ret[1]);
|
||||
break;
|
||||
}
|
||||
else conformal::apply_orientation(ret[0], ret[1]);
|
||||
|
||||
ghcheck(ret,H);
|
||||
return;
|
||||
}
|
||||
|
||||
if(pmodel == mdHalfplane) {
|
||||
// Poincare to half-plane
|
||||
|
||||
ld x0, y0;
|
||||
x0 = H[0] / tz;
|
||||
y0 = H[1] / tz;
|
||||
|
||||
conformal::apply_orientation(x0, y0);
|
||||
|
||||
y0 += 1;
|
||||
double rad = x0*x0 + y0*y0;
|
||||
y0 /= -rad;
|
||||
x0 /= -rad;
|
||||
y0 += .5;
|
||||
|
||||
conformal::apply_orientation(x0, y0);
|
||||
|
||||
auto& ps = conformal::halfplane_scale;
|
||||
x0 *= ps, y0 *= ps;
|
||||
|
||||
ret[0] = -conformal::osin - x0;
|
||||
if((wmspatial || mmspatial) && zlev) {
|
||||
if(conformal::ocos)
|
||||
y0 = y0 * pow(zlev, conformal::ocos);
|
||||
if(conformal::ocos && conformal::osin)
|
||||
y0 += x0 * conformal::osin * (pow(zlev, conformal::ocos) - 1) / conformal::ocos;
|
||||
else if(conformal::osin)
|
||||
y0 += x0 * conformal::osin * log(zlev);
|
||||
case mdFisheye: {
|
||||
ld zlev = find_zlev(H);
|
||||
H = space_to_perspective(H);
|
||||
H[2] = zlev;
|
||||
ret = H / sqrt(1 + sqhypot3(H));
|
||||
break;
|
||||
}
|
||||
ret[1] = conformal::ocos + y0;
|
||||
ret[2] = 0;
|
||||
if(zlev != 1 && stereo::active())
|
||||
apply_depth(ret, -y0 * geom3::factor_to_lev(zlev));
|
||||
ghcheck(ret,H);
|
||||
return;
|
||||
|
||||
case mdJoukowsky:
|
||||
case mdJoukowskyInverted: {
|
||||
conformal::apply_orientation(H[0], H[1]);
|
||||
// with equal speed skiprope: conformal::apply_orientation(H[1], H[0]);
|
||||
|
||||
if(vid.skiprope) {
|
||||
static ld last_skiprope = 0;
|
||||
static transmatrix lastmatrix;
|
||||
if(vid.skiprope != last_skiprope) {
|
||||
hyperpoint r = hpxyz(0, 0, 1);
|
||||
hyperpoint h = perspective_to_space(r, 1, gcSphere);
|
||||
hyperpoint h1 = rotmatrix(-vid.skiprope * M_PI / 180, 1, 2) * h;
|
||||
hyperpoint ret = space_to_perspective(h1, 1) / 2;
|
||||
typedef complex<ld> cld;
|
||||
const cld c1(1, 0);
|
||||
const cld c2(2, 0);
|
||||
const cld c4(4, 0);
|
||||
cld w(ret[0], ret[1]);
|
||||
cld z = sqrt(c4*w*w-c1) + c2*w;
|
||||
if(abs(z) > 1) z = c1 / z;
|
||||
hyperpoint zr = hpxyz(real(z), imag(z), 0);
|
||||
|
||||
hyperpoint inhyp = perspective_to_space(zr, 1, gcHyperbolic);
|
||||
last_skiprope = vid.skiprope;
|
||||
lastmatrix = rgpushxto0(inhyp);
|
||||
}
|
||||
H = lastmatrix * H;
|
||||
}
|
||||
|
||||
H = space_to_perspective(H);
|
||||
ld r = hypot2(H);
|
||||
ld c = H[0] / r;
|
||||
ld s = H[1] / r;
|
||||
ld& mt = conformal::model_transition;
|
||||
ld a = 1 - .5 * mt, b = .5 * mt;
|
||||
swap(a, b);
|
||||
|
||||
ret[0] = (a * r + b/r) * c / 2;
|
||||
ret[1] = (a * r - b/r) * s / 2;
|
||||
ret[2] = 0;
|
||||
|
||||
if(vid.skiprope) {
|
||||
hyperpoint h = perspective_to_space(ret * 2, 1, gcSphere);
|
||||
h = rotmatrix(vid.skiprope * M_PI / 180, 1, 2) * h;
|
||||
ret = space_to_perspective(h, 1) / 2;
|
||||
}
|
||||
|
||||
if(pmodel == mdJoukowskyInverted) {
|
||||
ld r2 = sqhypot2(ret);
|
||||
ret[0] = ret[0] / r2;
|
||||
ret[1] = -ret[1] / r2;
|
||||
conformal::apply_orientation(ret[1], ret[0]);
|
||||
|
||||
/*
|
||||
|
||||
ret[0] += 1;
|
||||
ld alpha = atan2(ret[1], ret[0]);
|
||||
ld mod = hypot(ret[0], ret[1]);
|
||||
// ret[0] = cos(alpha/2) * sqrt(mod);
|
||||
// ret[1] = sin(alpha/2) * sqrt(mod);
|
||||
ret[0] = alpha;
|
||||
ret[1] = log(mod); */
|
||||
}
|
||||
else conformal::apply_orientation(ret[0], ret[1]);
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
case mdPolygonal: case mdPolynomial: {
|
||||
|
||||
H = space_to_perspective(H);
|
||||
|
||||
conformal::apply_orientation(H[0], H[1]);
|
||||
|
||||
pair<long double, long double> p = polygonal::compute(H[0], H[1]);
|
||||
|
||||
conformal::apply_orientation(p.second, p.first);
|
||||
ret[0] = p.first;
|
||||
ret[1] = p.second;
|
||||
ret[2] = 0;
|
||||
break;
|
||||
}
|
||||
|
||||
case mdBand:
|
||||
if(conformal::model_transition != 1) {
|
||||
ld& mt = conformal::model_transition;
|
||||
|
||||
H = space_to_perspective(H);
|
||||
|
||||
conformal::apply_orientation(H[0], H[1]);
|
||||
|
||||
H[0] += 1;
|
||||
double rad = H[0]*H[0] + H[1]*H[1];
|
||||
H[1] /= rad;
|
||||
H[0] /= rad;
|
||||
H[0] -= .5;
|
||||
|
||||
ld phi = atan2(H);
|
||||
ld r = hypot2(H);
|
||||
|
||||
r = pow(r, 1 - mt);
|
||||
phi *= (1 - mt);
|
||||
ret[0] = r * cos(phi);
|
||||
ret[1] = r * sin(phi);
|
||||
ret[2] = 0;
|
||||
|
||||
ret[0] -= pow(0.5, 1-mt);
|
||||
ret[0] /= -(1-mt) * M_PI / 2;
|
||||
ret[1] /= (1-mt) * M_PI / 2;
|
||||
|
||||
conformal::apply_orientation(ret[1], ret[0]);
|
||||
}
|
||||
else
|
||||
makeband(H, ret, band_conformal);
|
||||
break;
|
||||
|
||||
case mdTwoPoint:
|
||||
makeband(H, ret, make_twopoint);
|
||||
break;
|
||||
|
||||
case mdBandEquiarea:
|
||||
makeband(H, ret, [] (ld& x, ld& y) { y = sin_auto(y); });
|
||||
break;
|
||||
|
||||
case mdBandEquidistant:
|
||||
makeband(H, ret, [] (ld& x, ld& y) { });
|
||||
break;
|
||||
|
||||
case mdSinusoidal:
|
||||
makeband(H, ret, [] (ld& x, ld& y) { x *= cos_auto(y); });
|
||||
break;
|
||||
|
||||
case mdEquidistant: case mdEquiarea: {
|
||||
ld zlev = find_zlev(H);
|
||||
|
||||
ld rad = hypot2(H);
|
||||
if(rad == 0) rad = 1;
|
||||
ld d = hdist0(H);
|
||||
ld df, zf;
|
||||
hypot_zlev(zlev, d, df, zf);
|
||||
|
||||
// 4 pi / 2pi = M_PI
|
||||
|
||||
if(pmodel == mdEquiarea && sphere)
|
||||
d = sqrt(2*(1 - cos(d))) * M_PI / 2;
|
||||
else if(pmodel == mdEquiarea && hyperbolic)
|
||||
d = sqrt(2*(cosh(d) - 1)) / 1.5;
|
||||
|
||||
ret = H * (d * df / rad / M_PI);
|
||||
ret[2] = 0;
|
||||
if(zlev != 1 && stereo::active())
|
||||
apply_depth(ret, d * zf / M_PI);
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
case mdGUARD: break;
|
||||
}
|
||||
|
||||
ghcheck(ret,H);
|
||||
}
|
||||
|
||||
// game-related graphics
|
||||
|
@ -338,6 +338,7 @@ ld period = 10000;
|
||||
int noframes = 30;
|
||||
ld cycle_length = 2 * M_PI;
|
||||
ld parabolic_length = 1;
|
||||
ld skiprope_rotation;
|
||||
|
||||
int lastticks, bak_turncount;
|
||||
|
||||
@ -493,6 +494,8 @@ void apply() {
|
||||
rug::apply_rotation(rug::currentrot * rotmatrix(rug_rotation2 * 2 * M_PI * t / period, 0, 1) * inverse(rug::currentrot));
|
||||
}
|
||||
}
|
||||
vid.skiprope += skiprope_rotation * t * 2 * M_PI / period;
|
||||
|
||||
if(ballangle_rotation) {
|
||||
if(conformal::model_has_orientation())
|
||||
conformal::model_orientation += ballangle_rotation * 360 * t / period;
|
||||
|
Loading…
Reference in New Issue
Block a user