1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2025-01-12 02:10:34 +00:00

refactored gethyper

This commit is contained in:
Zeno Rogue 2018-11-06 15:53:50 +01:00
parent 5ba198f3a6
commit 8e7abf6292
3 changed files with 419 additions and 404 deletions

View File

@ -1051,6 +1051,8 @@ struct videopar {
int use_smart_range; // 0 = distance-based, 1 = model-based, 2 = model-based and generate int use_smart_range; // 0 = distance-based, 1 = model-based, 2 = model-based and generate
ld smart_range_detail;// minimum visible cell for modes 1 and 2 ld smart_range_detail;// minimum visible cell for modes 1 and 2
int cells_drawn_limit; int cells_drawn_limit;
ld skiprope;
}; };
extern videopar vid; extern videopar vid;

View File

@ -20,6 +20,53 @@ void camrotate(ld& hx, ld& hy) {
hx = ux / uz, hy = uy / uz; hx = ux / uz, hy = uy / uz;
} }
hyperpoint perspective_to_space(hyperpoint h, ld alpha = vid.alpha, eGeometryClass geo = ginf[geometry].cclass);
hyperpoint dhp(ld x, ld y, ld z) { return hpxyz(x, y, z); }
hyperpoint perspective_to_space(hyperpoint h, ld alpha, eGeometryClass gc) {
ld hx = h[0], hy = h[1];
if(gc == gcEuclid)
return hpxy(hx * (1 + alpha), hy * (1 + alpha));
ld hr = hx*hx+hy*hy;
if(hr > .9999 && gc == gcHyperbolic) return Hypc;
ld A, B, C;
ld curv = gc == gcSphere ? 1 : -1;
A = 1+curv*hr;
B = 2*hr*vid.alpha*-curv;
C = 1 - curv*hr*vid.alpha*vid.alpha;
B /= A; C /= A;
ld rootsign = 1;
if(gc == gcSphere && vid.alpha > 1) rootsign = -1;
ld hz = B / 2 + rootsign * sqrt(C + B*B/4);
hyperpoint H;
H[0] = hx * (hz+vid.alpha);
H[1] = hy * (hz+vid.alpha);
H[2] = hz;
return H;
}
hyperpoint space_to_perspective(hyperpoint z, ld alpha = vid.alpha);
hyperpoint space_to_perspective(hyperpoint z, ld alpha) {
ld s = 1 / (alpha + z[2]);
z[0] *= s;
z[1] *= s;
z[2] = 0;
return z;
}
hyperpoint gethyper(ld x, ld y) { hyperpoint gethyper(ld x, ld y) {
ld hx = (x - vid.xcenter) / vid.radius; ld hx = (x - vid.xcenter) / vid.radius;
@ -32,45 +79,7 @@ hyperpoint gethyper(ld x, ld y) {
if(vid.camera_angle) camrotate(hx, hy); if(vid.camera_angle) camrotate(hx, hy);
if(euclid) return perspective_to_space(hpxyz(hx, hy, 0));
return hpxy(hx * (1 + vid.alpha), hy * (1 + vid.alpha));
ld hr = hx*hx+hy*hy;
if(hr > .9999 && !sphere) return Hypc;
// hz*hz-(hx/(hz+alpha))^2 - (hy/(hz+alpha))^2 =
// hz*hz-hr*(hz+alpha)^2 == 1
// hz*hz - hr*hr*hz*Hz
ld A, B, C;
ld curv = sphere ? 1 : -1;
A = 1+curv*hr;
B = 2*hr*vid.alpha*-curv;
C = 1 - curv*hr*vid.alpha*vid.alpha;
// Az^2 - Bz = C
B /= A; C /= A;
// z^2 - Bz = C
// z^2 - Bz + (B^2/4) = C + (B^2/4)
// z = (B/2) + sqrt(C + B^2/4)
ld rootsign = 1;
if(sphere && vid.alpha > 1) rootsign = -1;
ld hz = B / 2 + rootsign * sqrt(C + B*B/4);
hyperpoint H;
H[0] = hx * (hz+vid.alpha);
H[1] = hy * (hz+vid.alpha);
H[2] = hz;
return H;
} }
void ballmodel(hyperpoint& ret, double alpha, double d, double zl) { void ballmodel(hyperpoint& ret, double alpha, double d, double zl) {
@ -100,62 +109,189 @@ void apply_depth(hyperpoint &f, ld z) {
} }
} }
bool hypot_zlev(bool zlev_used, ld& d, ld zlev, ld& df, ld& zf, ld &z) { bool hypot_zlev(ld zlev, ld& d, ld& df, ld& zf) {
if(!zlev_used) { if(zlev == 1) {
df = 1; zf = 0; df = 1; zf = 0;
return false; return false;
} }
else { else {
// (0,0,1) -> (0, sin z, cos z) -> (sin d cos z, sin z, cos d cos z) // (0,0,1) -> (0, sin z, cos z) -> (sin d cos z, sin z, cos d cos z)
ld z = geom3::factor_to_lev(zlev); ld z = geom3::factor_to_lev(zlev);
ld tz = sin_auto(z); ld tz = sin_auto(z);
ld td = sin_auto(abs(d)) * cos_auto(z); ld td = sin_auto(abs(d)) * cos_auto(z);
ld h = hypot(td, tz); ld h = hypot(td, tz);
zf = tz / h, df = td / h;
if(d > 0) if(d > 0)
d = hypot_auto(d, z); d = hypot_auto(d, z);
else else
d = -hypot_auto(d, z); d = -hypot_auto(d, z);
zf = tz / h, df = td / h;
return true; return true;
} }
} }
bool hypot_zlev(bool zlev_used, ld& d, ld zlev, ld& df, ld& zf) {
ld z;
return hypot_zlev(zlev_used, d, zlev, df, zf, z);
}
int twopoint_sphere_flips; int twopoint_sphere_flips;
bool twopoint_do_flips; bool twopoint_do_flips;
void applymodel(hyperpoint H, hyperpoint& ret) { ld find_zlev(hyperpoint& H) {
ld tz = euclid ? (1+vid.alpha) : vid.alpha+H[2]; if(wmspatial || mmspatial) {
if(tz < BEHIND_LIMIT && tz > -BEHIND_LIMIT) tz = BEHIND_LIMIT;
if(pmodel == mdUnchanged) {
for(int i=0; i<3; i++) ret[i] = H[i] / vid.radius;
return;
}
if(pmodel == mdBall) {
ld zlev = zlevel(H); ld zlev = zlevel(H);
using namespace hyperpoint_vec; using namespace hyperpoint_vec;
H = H / zlev; if(zlev > 1-1e-6 && zlev < 1+1e-6) return 1;
H /= zlev;
return zlev;
}
ld zl = geom3::depth-geom3::factor_to_lev(zlev); return 1;
double alpha = atan2(H[1], H[0]); }
double d = hdist0(H);
ballmodel(ret, alpha, d, zl); ld get_tz(hyperpoint H) {
ghcheck(ret,H); ld tz = euclid ? (1+vid.alpha) : vid.alpha+H[2];
if(tz < BEHIND_LIMIT && tz > -BEHIND_LIMIT) tz = BEHIND_LIMIT;
return tz;
}
ld atan2(hyperpoint h) {
return atan2(h[1], h[0]);
}
template<class T> void makeband(hyperpoint H, hyperpoint& ret, const T& f) {
ld zlev = find_zlev(H);
conformal::apply_orientation(H[0], H[1]);
ld x, y, yf, zf=0;
y = asin_auto(H[1]);
x = asin_auto_clamp(H[0] / cos_auto(y));
if(sphere) {
if(H[2] < 0 && x > 0) x = M_PI - x;
else if(H[2] < 0 && x <= 0) x = -M_PI - x;
}
hypot_zlev(zlev, y, yf, zf);
f(x, y);
ld yzf = y * zf; y *= yf;
conformal::apply_orientation(y, x);
ret = hpxyz(x / M_PI, y / M_PI, 0);
if(zlev != 1 && stereo::active())
apply_depth(ret, yzf / M_PI);
return; return;
} }
if(pmodel == mdHemisphere) { void band_conformal(ld& x, ld& y) {
switch(cgclass) {
case gcSphere:
y = atanh(sin(y));
x *= 2; y *= 2;
break;
case gcHyperbolic:
y = 2 * atan(tanh(y/2));
x *= 2; y *= 2;
break;
case gcEuclid:
// y = y;
y *= 2; x *= 2;
break;
}
}
void make_twopoint(ld& x, ld& y) {
auto p = vid.twopoint_param;
ld dleft = hypot_auto(x-p, y);
ld dright = hypot_auto(x+p, y);
if(sphere) {
int tss = twopoint_sphere_flips;
if(tss&1) { tss--;
dleft = 2*M_PI - 2*p - dleft;
dright = 2*M_PI - 2*p - dright;
swap(dleft, dright);
y = -y;
}
while(tss) { tss -= 2;
dleft = 2*M_PI - 4*p + dleft;
dright = 2*M_PI - 4*p + dright;
}
}
x = (dright*dright-dleft*dleft) / 4 / p;
y = (y>0?1:-1) * sqrt(dleft * dleft - (x-p)*(x-p) + 1e-9);
}
void applymodel(hyperpoint H, hyperpoint& ret) {
using namespace hyperpoint_vec; using namespace hyperpoint_vec;
switch(pmodel) {
case mdUnchanged:
ret = H / vid.radius;
return;
case mdBall: {
ld zlev = find_zlev(H);
ld zl = geom3::depth-geom3::factor_to_lev(zlev);
ballmodel(ret, atan2(H), hdist0(H), zl);
break;
}
case mdDisk: {
ld tz = get_tz(H);
if(!vid.camera_angle) {
ret[0] = H[0] / tz;
ret[1] = H[1] / tz;
ret[2] = vid.xres * stereo::eyewidth() / 2 / vid.radius - stereo::ipd / tz / 2;
}
else {
ld tx = H[0];
ld ty = H[1];
ld cam = vid.camera_angle * M_PI / 180;
GLfloat cc = cos(cam);
GLfloat ss = sin(cam);
ld ux = tx, uy = ty * cc - ss * tz, uz = tz * cc + ss * ty;
ret[0] = ux / uz;
ret[1] = uy / uz;
ret[2] = vid.xres * stereo::eyewidth() / 2 / vid.radius - stereo::ipd / uz / 2;
}
return;
}
case mdHalfplane: {
// Poincare to half-plane
ld zlev = find_zlev(H);
H = space_to_perspective(H);
conformal::apply_orientation(H[0], H[1]);
H[1] += 1;
double rad = sqhypot2(H);
H /= -rad;
H[1] += .5;
conformal::apply_orientation(H[0], H[1]);
H *= conformal::halfplane_scale;
ret[0] = -conformal::osin - H[0];
if(zlev != 1) {
if(abs(conformal::ocos) > 1e-5)
H[1] = H[1] * pow(zlev, conformal::ocos);
if(abs(conformal::ocos) > 1e-5 && conformal::osin)
H[1] += H[0] * conformal::osin * (pow(zlev, conformal::ocos) - 1) / conformal::ocos;
else if(conformal::osin)
H[1] += H[0] * conformal::osin * log(zlev);
}
ret[1] = conformal::ocos + H[1];
ret[2] = 0;
if(zlev != 1 && stereo::active())
apply_depth(ret, -H[1] * geom3::factor_to_lev(zlev));
break;
}
case mdHemisphere: {
switch(cgclass) { switch(cgclass) {
case gcHyperbolic: { case gcHyperbolic: {
ld zl = zlevel(H); ld zl = zlevel(H);
@ -189,32 +325,23 @@ void applymodel(hyperpoint H, hyperpoint& ret) {
conformal::apply_ball(ret[2], ret[1]); conformal::apply_ball(ret[2], ret[1]);
ghcheck(ret, H); break;
return;
} }
if(pmodel == mdHyperboloidFlat) { case mdHyperboloidFlat:
H[2] += vid.alpha; case mdHyperboloid: {
H[0] /= H[2];
H[1] /= H[2];
H[2] = 1 - vid.alpha;
ret[0] = H[0] / 3;
ret[1] = (1 - H[2]) / 3;
ret[2] = H[1] / 3;
conformal::apply_ball(ret[2], ret[1]);
ghcheck(ret,H);
return;
}
if(pmodel == mdHyperboloid) { if(pmodel == mdHyperboloid) {
ld& tz = conformal::top_z; ld& topz = conformal::top_z;
if(H[2] > tz) { if(H[2] > topz) {
ld scale = sqrt(tz*tz-1) / hypot(H[0], H[1]); ld scale = sqrt(topz*topz-1) / hypot2(H);
H[0] *= scale; H *= scale;
H[1] *= scale; H[2] = topz;
H[2] = tz; }
}
else {
H = space_to_perspective(H, vid.alpha);
H[2] = 1 - vid.alpha;
} }
ret[0] = H[0] / 3; ret[0] = H[0] / 3;
@ -222,228 +349,50 @@ void applymodel(hyperpoint H, hyperpoint& ret) {
ret[2] = H[1] / 3; ret[2] = H[1] / 3;
conformal::apply_ball(ret[2], ret[1]); conformal::apply_ball(ret[2], ret[1]);
ghcheck(ret,H); break;
return;
} }
if(pmodel == mdDisk) { case mdFisheye: {
ld zlev = find_zlev(H);
if(!vid.camera_angle) { H = space_to_perspective(H);
ret[0] = H[0] / tz; H[2] = zlev;
ret[1] = H[1] / tz; ret = H / sqrt(1 + sqhypot3(H));
ret[2] = vid.xres * stereo::eyewidth() / 2 / vid.radius - stereo::ipd / tz / 2; break;
}
else {
ld tx = H[0];
ld ty = H[1];
ld cam = vid.camera_angle * M_PI / 180;
GLfloat cc = cos(cam);
GLfloat ss = sin(cam);
ld ux = tx, uy = ty * cc - ss * tz, uz = tz * cc + ss * ty;
ret[0] = ux / uz;
ret[1] = uy / uz;
ret[2] = vid.xres * stereo::eyewidth() / 2 / vid.radius - stereo::ipd / uz / 2;
}
return;
} }
if(pmodel == mdFisheye) { case mdJoukowsky:
ret[0] = H[0] / tz; case mdJoukowskyInverted: {
ret[1] = H[1] / tz;
ld hypot = sqrt(1 + ret[0]*ret[0] + ret[1]*ret[1]);
ret[0] /= hypot;
ret[1] /= hypot;
ghcheck(ret, H);
return;
}
ld zlev = 1;
bool zlev_used = false;
if(wmspatial || mmspatial) {
zlev = zlevel(H);
using namespace hyperpoint_vec;
zlev_used = !((zlev > 1-1e-6 && zlev < 1+1e-6));
if(zlev_used) H /= zlev;
}
if(pmodel == mdBand && conformal::model_transition != 1) {
ld& mt = conformal::model_transition;
ld x0, y0;
x0 = H[0] / tz;
y0 = H[1] / tz;
conformal::apply_orientation(x0, y0);
x0 += 1;
double rad = x0*x0 + y0*y0;
y0 /= rad;
x0 /= rad;
x0 -= .5;
ld phi = atan2(y0, x0);
ld r = hypot(x0, y0);
r = pow(r, 1 - mt);
phi *= (1 - mt);
ret[0] = r * cos(phi);
ret[1] = r * sin(phi);
ret[2] = 0;
ret[0] -= pow(0.5, 1-mt);
ret[0] /= -(1-mt) * M_PI / 2;
ret[1] /= (1-mt) * M_PI / 2;
conformal::apply_orientation(ret[1], ret[0]);
ghcheck(ret,H);
return;
}
if(pmodel == mdTwoPoint || mdBandAny() || pmodel == mdSinusoidal) {
// map to plane
if(false) {
auto p = vid.twopoint_param;
ld dleft = hdist(H, xpush0(-p));
ld dright = hdist(H, xpush0(p));
ld yf = 1, zf = 0;
if(zlev_used) {
ld y_orig = asin_auto(H[1]);
ld z;
hypot_zlev(true, y_orig, zlev, yf, zf, z);
dleft = hypot_auto(dleft, z);
dright = hypot_auto(dright, z);
}
ld x = (dright*dright-dleft*dleft) / 4 / p;
ld y = sqrt(dleft * dleft - (x-p)*(x-p) + 1e-9);
x = -x;
ret = hpxyz(x/M_PI, y*(H[1]<0?-1:1)*yf/M_PI, 0);
if(zlev_used && stereo::active())
apply_depth(ret, y * zf / M_PI);
}
else {
conformal::apply_orientation(H[0], H[1]); conformal::apply_orientation(H[0], H[1]);
// with equal speed skiprope: conformal::apply_orientation(H[1], H[0]);
ld x, y, yf, zf=0; if(vid.skiprope) {
y = asin_auto(H[1]); static ld last_skiprope = 0;
x = asin_auto_clamp(H[0] / cos_auto(y)); static transmatrix lastmatrix;
if(sphere) { if(vid.skiprope != last_skiprope) {
if(H[2] < 0 && x > 0) x = M_PI - x; hyperpoint r = hpxyz(0, 0, 1);
else if(H[2] < 0 && x <= 0) x = -M_PI - x; hyperpoint h = perspective_to_space(r, 1, gcSphere);
} hyperpoint h1 = rotmatrix(-vid.skiprope * M_PI / 180, 1, 2) * h;
hypot_zlev(zlev_used, y, zlev, yf, zf); hyperpoint ret = space_to_perspective(h1, 1) / 2;
typedef complex<ld> cld;
const cld c1(1, 0);
const cld c2(2, 0);
const cld c4(4, 0);
cld w(ret[0], ret[1]);
cld z = sqrt(c4*w*w-c1) + c2*w;
if(abs(z) > 1) z = c1 / z;
hyperpoint zr = hpxyz(real(z), imag(z), 0);
switch(pmodel) { hyperpoint inhyp = perspective_to_space(zr, 1, gcHyperbolic);
case mdTwoPoint: { last_skiprope = vid.skiprope;
auto p = vid.twopoint_param; lastmatrix = rgpushxto0(inhyp);
ld dleft = hypot_auto(x-p, y);
ld dright = hypot_auto(x+p, y);
if(sphere) {
int tss = twopoint_sphere_flips;
if(tss&1) { tss--;
dleft = 2*M_PI - 2*p - dleft;
dright = 2*M_PI - 2*p - dright;
swap(dleft, dright);
y = -y;
} }
while(tss) { tss -= 2; H = lastmatrix * H;
dleft = 2*M_PI - 4*p + dleft;
dright = 2*M_PI - 4*p + dright;
}
}
x = (dright*dright-dleft*dleft) / 4 / p;
y = (y>0?1:-1) * sqrt(dleft * dleft - (x-p)*(x-p) + 1e-9);
break;
}
case mdBand: {
switch(cgclass) {
case gcSphere:
y = atanh(sin(y));
x *= 2; y *= 2;
break;
case gcHyperbolic:
y = 2 * atan(tanh(y/2));
x *= 2; y *= 2;
break;
case gcEuclid:
// y = y;
y *= 2; x *= 2;
break;
}
break;
}
case mdBandEquiarea: {
y = sin_auto(y);
break;
}
case mdSinusoidal: {
x *= cos_auto(y);
break;
}
case mdBandEquidistant: {
break;
}
default: {
printf("unknown model\n");
}
}
ld yzf = y * zf; y *= yf;
conformal::apply_orientation(y, x);
ret = hpxyz(x / M_PI, y / M_PI, 0);
if(zlev_used && stereo::active())
apply_depth(ret, yzf / M_PI);
}
ghcheck(ret, H);
return;
} }
if(mdAzimuthalEqui()) { H = space_to_perspective(H);
ld rad = sqrt(H[0] * H[0] + H[1] * H[1]); ld r = hypot2(H);
if(rad == 0) rad = 1; ld c = H[0] / r;
ld d = hdist0(H); ld s = H[1] / r;
ld yf, zf;
hypot_zlev(zlev_used, d, zlev, yf, zf);
// 4 pi / 2pi = M_PI
if(pmodel == 6 && sphere)
d = sqrt(2*(1 - cos(d))) * M_PI / 2;
else if(pmodel == 6 && !euclid)
d = sqrt(2*(cosh(d) - 1)) / 1.5;
ret[0] = d * yf * H[0] / rad / M_PI;
ret[1] = d * yf * H[1] / rad / M_PI;
ret[2] = 0;
if(zlev_used && stereo::active())
apply_depth(ret, d * zf / M_PI);
ghcheck(ret,H);
return;
}
tz = H[2]+vid.alpha;
if(pmodel == mdPolygonal || pmodel == mdPolynomial) {
conformal::apply_orientation(H[0], H[1]);
pair<long double, long double> p = polygonal::compute(H[0]/tz, H[1]/tz);
conformal::apply_orientation(p.second, p.first);
ret[0] = p.first;
ret[1] = p.second;
ret[2] = 0;
ghcheck(ret,H);
return;
}
if(among(pmodel, mdJoukowsky, mdJoukowskyInverted)) {
ld x0, y0;
x0 = H[0] / tz;
y0 = H[1] / tz;
conformal::apply_orientation(x0, y0);
ld r = hypot(x0, y0);
ld c = x0 / r;
ld s = y0 / r;
ld& mt = conformal::model_transition; ld& mt = conformal::model_transition;
ld a = 1 - .5 * mt, b = .5 * mt; ld a = 1 - .5 * mt, b = .5 * mt;
swap(a, b); swap(a, b);
@ -452,6 +401,12 @@ void applymodel(hyperpoint H, hyperpoint& ret) {
ret[1] = (a * r - b/r) * s / 2; ret[1] = (a * r - b/r) * s / 2;
ret[2] = 0; ret[2] = 0;
if(vid.skiprope) {
hyperpoint h = perspective_to_space(ret * 2, 1, gcSphere);
h = rotmatrix(vid.skiprope * M_PI / 180, 1, 2) * h;
ret = space_to_perspective(h, 1) / 2;
}
if(pmodel == mdJoukowskyInverted) { if(pmodel == mdJoukowskyInverted) {
ld r2 = sqhypot2(ret); ld r2 = sqhypot2(ret);
ret[0] = ret[0] / r2; ret[0] = ret[0] / r2;
@ -470,46 +425,101 @@ void applymodel(hyperpoint H, hyperpoint& ret) {
} }
else conformal::apply_orientation(ret[0], ret[1]); else conformal::apply_orientation(ret[0], ret[1]);
ghcheck(ret,H); break;
return;
} }
if(pmodel == mdHalfplane) { case mdPolygonal: case mdPolynomial: {
// Poincare to half-plane
ld x0, y0; H = space_to_perspective(H);
x0 = H[0] / tz;
y0 = H[1] / tz;
conformal::apply_orientation(x0, y0); conformal::apply_orientation(H[0], H[1]);
y0 += 1; pair<long double, long double> p = polygonal::compute(H[0], H[1]);
double rad = x0*x0 + y0*y0;
y0 /= -rad;
x0 /= -rad;
y0 += .5;
conformal::apply_orientation(x0, y0); conformal::apply_orientation(p.second, p.first);
ret[0] = p.first;
auto& ps = conformal::halfplane_scale; ret[1] = p.second;
x0 *= ps, y0 *= ps; ret[2] = 0;
break;
ret[0] = -conformal::osin - x0;
if((wmspatial || mmspatial) && zlev) {
if(conformal::ocos)
y0 = y0 * pow(zlev, conformal::ocos);
if(conformal::ocos && conformal::osin)
y0 += x0 * conformal::osin * (pow(zlev, conformal::ocos) - 1) / conformal::ocos;
else if(conformal::osin)
y0 += x0 * conformal::osin * log(zlev);
} }
ret[1] = conformal::ocos + y0;
case mdBand:
if(conformal::model_transition != 1) {
ld& mt = conformal::model_transition;
H = space_to_perspective(H);
conformal::apply_orientation(H[0], H[1]);
H[0] += 1;
double rad = H[0]*H[0] + H[1]*H[1];
H[1] /= rad;
H[0] /= rad;
H[0] -= .5;
ld phi = atan2(H);
ld r = hypot2(H);
r = pow(r, 1 - mt);
phi *= (1 - mt);
ret[0] = r * cos(phi);
ret[1] = r * sin(phi);
ret[2] = 0;
ret[0] -= pow(0.5, 1-mt);
ret[0] /= -(1-mt) * M_PI / 2;
ret[1] /= (1-mt) * M_PI / 2;
conformal::apply_orientation(ret[1], ret[0]);
}
else
makeband(H, ret, band_conformal);
break;
case mdTwoPoint:
makeband(H, ret, make_twopoint);
break;
case mdBandEquiarea:
makeband(H, ret, [] (ld& x, ld& y) { y = sin_auto(y); });
break;
case mdBandEquidistant:
makeband(H, ret, [] (ld& x, ld& y) { });
break;
case mdSinusoidal:
makeband(H, ret, [] (ld& x, ld& y) { x *= cos_auto(y); });
break;
case mdEquidistant: case mdEquiarea: {
ld zlev = find_zlev(H);
ld rad = hypot2(H);
if(rad == 0) rad = 1;
ld d = hdist0(H);
ld df, zf;
hypot_zlev(zlev, d, df, zf);
// 4 pi / 2pi = M_PI
if(pmodel == mdEquiarea && sphere)
d = sqrt(2*(1 - cos(d))) * M_PI / 2;
else if(pmodel == mdEquiarea && hyperbolic)
d = sqrt(2*(cosh(d) - 1)) / 1.5;
ret = H * (d * df / rad / M_PI);
ret[2] = 0; ret[2] = 0;
if(zlev != 1 && stereo::active()) if(zlev != 1 && stereo::active())
apply_depth(ret, -y0 * geom3::factor_to_lev(zlev)); apply_depth(ret, d * zf / M_PI);
ghcheck(ret,H);
return; break;
} }
case mdGUARD: break;
}
ghcheck(ret,H);
} }
// game-related graphics // game-related graphics

View File

@ -338,6 +338,7 @@ ld period = 10000;
int noframes = 30; int noframes = 30;
ld cycle_length = 2 * M_PI; ld cycle_length = 2 * M_PI;
ld parabolic_length = 1; ld parabolic_length = 1;
ld skiprope_rotation;
int lastticks, bak_turncount; int lastticks, bak_turncount;
@ -493,6 +494,8 @@ void apply() {
rug::apply_rotation(rug::currentrot * rotmatrix(rug_rotation2 * 2 * M_PI * t / period, 0, 1) * inverse(rug::currentrot)); rug::apply_rotation(rug::currentrot * rotmatrix(rug_rotation2 * 2 * M_PI * t / period, 0, 1) * inverse(rug::currentrot));
} }
} }
vid.skiprope += skiprope_rotation * t * 2 * M_PI / period;
if(ballangle_rotation) { if(ballangle_rotation) {
if(conformal::model_has_orientation()) if(conformal::model_has_orientation())
conformal::model_orientation += ballangle_rotation * 360 * t / period; conformal::model_orientation += ballangle_rotation * 360 * t / period;