1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2025-01-11 18:00:34 +00:00

rv:: kohonen

This commit is contained in:
Zeno Rogue 2022-03-01 08:42:20 +01:00
parent bd46fbd0ae
commit 85d0173d36

View File

@ -264,10 +264,7 @@ bool triangulate(kohvec d, neuron& w, map<cell*, neuron*>& find, transmatrix& re
}
if(diff < bdiff) bdiff = diff, candidate = w2, cdir = i;
}
if(cdir == -1) {
println(hlog, "not enough directions");
return false;
}
if(cdir == -1) break;
dirs.push_back(cdir);
other.push_back(candidate);
kv.push_back(candidate->net);
@ -291,6 +288,7 @@ bool triangulate(kohvec d, neuron& w, map<cell*, neuron*>& find, transmatrix& re
for(int i=0; i<q; i++) {
R[i][i] = vdot(kv[i], kv[i]);
if(R[i][i] < 1e-12) {
/*
auto head = [] (const vector<ld>& v) { vector<ld> res; for(int i=0; i<10; i++) res.push_back(v[i]); return res; };
println(hlog, "dot too small, i=", i,", dirs=", dirs);
println(hlog, "a = ", head(a));
@ -299,6 +297,7 @@ bool triangulate(kohvec d, neuron& w, map<cell*, neuron*>& find, transmatrix& re
println(hlog, "orig kv: ", head(z->net), " @ ", z->where);
for(auto z: kv)
println(hlog, "curr kv: ", head(z));
*/
return false;
}
for(int j=i+1; j<q; j++) {
@ -445,7 +444,7 @@ struct cellcrawler {
store(cw, i, j, cl);
}
}
if(gaussian) for(cellcrawlerdata& s: data)
if(gaussian || true) for(cellcrawlerdata& s: data)
s.dist = mydistance(s.orig.at, start.at);
}
@ -462,11 +461,13 @@ struct cellcrawler {
}
}
vector<vector<ld>> dispersion;
vector<vector<float>> dispersion;
};
double dispersion_end_at = 1.6;
bool dispersion_long;
double dispersion_precision = .0001;
int dispersion_each = 1;
@ -476,10 +477,10 @@ void buildcellcrawler(cell *c, cellcrawler& cr, int dir) {
cr.build(cellwalker(c,dir));
if(!gaussian) {
vector<ld> curtemp;
vector<ld> newtemp;
vector<float> curtemp;
vector<float> newtemp;
vector<int> qty;
vector<pair<ld*, ld*> > pairs;
vector<pair<float*, float*> > pairs;
int N = isize(net);
curtemp.resize(N, 0);
@ -504,7 +505,7 @@ void buildcellcrawler(cell *c, cellcrawler& cr, int dir) {
d.clear();
DEBBI(DF_LOG, ("Building dispersion, precision = ", dispersion_precision, " end_at = ", dispersion_end_at, "...\n"));
// DEBBI(DF_LOG, ("Building dispersion, precision = ", dispersion_precision, " end_at = ", dispersion_end_at, "...\n"));
for(iter=0; dispersion_count ? true : vmax > vmin * dispersion_end_at; iter++) {
if(iter % dispersion_each == 0) {
@ -527,10 +528,13 @@ void buildcellcrawler(cell *c, cellcrawler& cr, int dir) {
for(int i=0; i<N; i++)
if(curtemp[i] < vmin) vmin = curtemp[i];
else if(curtemp[i] > vmax) vmax = curtemp[i];
// if(iter % 50 == 0) println(hlog, "iter=", iter, " vmin=", vmin, " vmax=", vmax, " pairs=", isize(pairs));
}
dispersion_count = isize(d);
DEBB(DF_LOG, ("Dispersion count = ", dispersion_count));
if(!dispersion_count) {
if(!dispersion_long) dispersion_count = isize(d);
DEBB(DF_LOG, ("Dispersion count = ", isize(d), " celldist = ", celldist(c)));
}
/*
println(hlog, "dlast = ", d.back());
println(hlog, "dlast2 = ", d[d.size()-2]);
@ -542,7 +546,9 @@ void buildcellcrawler(cell *c, cellcrawler& cr, int dir) {
map<int, cellcrawler> scc;
pair<int, int> get_cellcrawler_id(cell *c) {
if(among(geometry, gZebraQuotient, gMinimal, gArnoldCat, gField435, gField534) || (euclid && quotient && !bounded) || IRREGULAR || (GDIM == 3 && sphere) || (hyperbolic && GDIM == 3 && quotient)
if(!bounded)
return make_pair(neuronId(*getNeuronSlow(c)), 0);
if(among(geometry, gZebraQuotient, gMinimal, gArnoldCat, gField435, gField534) || (euclid && quotient && !bounded) || IRREGULAR || (GDIM == 3 && sphere) || (hyperbolic && GDIM == 3)
|| (euclid && nonorientable)) {
// Zebra Quotient does exhibit some symmetries,
// but these are so small anyway that it is safer to just build
@ -893,7 +899,7 @@ void initialize_dispersion() {
DEBBI(DF_LOG, ("Initializing dispersion"));
if(gaussian) {
if(gaussian || true) {
DEBB(DF_LOG, ("dist = ", fts(mydistance(net[0].where, net[1].where))));
cell *c1 = net[cells/2].where;
vector<double> mapdist;
@ -905,16 +911,23 @@ void initialize_dispersion() {
dispersion_count = 0;
if(!gaussian)
DEBB(DF_LOG, ("dispersion precision = ", dispersion_precision, " end_at = ", dispersion_end_at, "...\n"));
DEBB(DF_LOG, ("building crawlers...\n"));
scc.clear();
for(int i=0; i<cells; i++) {
cell *c = net[i].where;
auto cid = get_cellcrawler_id(c);
if(!scc.count(cid.first)) {
DEBB(DF_LOG, ("Building cellcrawler id = ", itsh(cid.first)));
// DEBB(DF_LOG, ("Building cellcrawler id = ", itsh(cid.first)));
buildcellcrawler(c, scc[cid.first], cid.second);
}
}
DEBB(DF_LOG, ("crawlers constructed = ", isize(scc), "\n"));
lpct = -46130;
state |= KS_DISPERSION;
}
@ -1552,7 +1565,7 @@ int readArgs() {
gaussian = 0;
state &=~ KS_DISPERSION;
}
else if(argis("-somcgauss")) {
else if(argis("-somcgauss") || argis("-cgauss")) {
gaussian = 1;
state &=~ KS_DISPERSION;
}
@ -1582,11 +1595,18 @@ int readArgs() {
shift(); t = (t*1./tmax) * argi();
tmax = argi();
}
else if(argis("-somlong")) {
shift(); dispersion_long = argi();
}
else if(argis("-somlearn")) {
// this one can be changed at any moment
shift_arg_formula(learning_factor);
}
else if(argis("-som-analyze")) {
analyze();
}
else if(argis("-somrun")) {
initialize_rv();
set_neuron_initial();