mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2025-01-26 00:47:00 +00:00
field quotient generalized
This commit is contained in:
parent
362b11a383
commit
6f541c0a3e
@ -23,6 +23,7 @@ struct primeinfo {
|
|||||||
struct fgeomextra {
|
struct fgeomextra {
|
||||||
eGeometry base;
|
eGeometry base;
|
||||||
vector<primeinfo> primes;
|
vector<primeinfo> primes;
|
||||||
|
vector<int> dualval;
|
||||||
int current_prime_id;
|
int current_prime_id;
|
||||||
fgeomextra(eGeometry b, int i) : base(b), current_prime_id(i) {}
|
fgeomextra(eGeometry b, int i) : base(b), current_prime_id(i) {}
|
||||||
};
|
};
|
||||||
@ -69,7 +70,7 @@ EX int btspin(int id, int d) {
|
|||||||
#if HDR
|
#if HDR
|
||||||
struct fpattern {
|
struct fpattern {
|
||||||
|
|
||||||
int Prime, wsquare, Field;
|
int Prime, wsquare, Field, dual;
|
||||||
// we perform our computations in the field Z_Prime[w] where w^2 equals wsquare
|
// we perform our computations in the field Z_Prime[w] where w^2 equals wsquare
|
||||||
// (or simply Z_Prime for wsquare == 0)
|
// (or simply Z_Prime for wsquare == 0)
|
||||||
|
|
||||||
@ -278,6 +279,8 @@ struct fpattern {
|
|||||||
|
|
||||||
void findsubpath();
|
void findsubpath();
|
||||||
|
|
||||||
|
vector<matrix> generate_isometries();
|
||||||
|
|
||||||
bool check_order(matrix M, int req);
|
bool check_order(matrix M, int req);
|
||||||
};
|
};
|
||||||
#endif
|
#endif
|
||||||
@ -291,6 +294,35 @@ bool fpattern::check_order(matrix M, int req) {
|
|||||||
return P == Id;
|
return P == Id;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
vector<matrix> fpattern::generate_isometries() {
|
||||||
|
matrix T = Id;
|
||||||
|
int low = wsquare ? 1-Prime : 0;
|
||||||
|
vector<matrix> res;
|
||||||
|
|
||||||
|
auto colprod = [&] (int a, int b) {
|
||||||
|
return add(add(mul(T[0][a], T[0][b]), mul(T[1][a], T[1][b])), mul(T[2][a], T[2][b]));
|
||||||
|
};
|
||||||
|
|
||||||
|
for(T[0][0]=low; T[0][0]<Prime; T[0][0]++)
|
||||||
|
for(T[1][0]=low; T[1][0]<Prime; T[1][0]++)
|
||||||
|
for(T[2][0]=low; T[2][0]<Prime; T[2][0]++)
|
||||||
|
if(colprod(0, 0) == 1)
|
||||||
|
for(T[0][1]=low; T[0][1]<Prime; T[0][1]++)
|
||||||
|
for(T[1][1]=low; T[1][1]<Prime; T[1][1]++)
|
||||||
|
for(T[2][1]=low; T[2][1]<Prime; T[2][1]++)
|
||||||
|
if(colprod(1, 1) == 1)
|
||||||
|
if(colprod(1, 0) == 0)
|
||||||
|
for(T[0][2]=low; T[0][2]<Prime; T[0][2]++)
|
||||||
|
for(T[1][2]=low; T[1][2]<Prime; T[1][2]++)
|
||||||
|
for(T[2][2]=low; T[2][2]<Prime; T[2][2]++)
|
||||||
|
if(colprod(2, 2) == 1)
|
||||||
|
if(colprod(2, 0) == 0)
|
||||||
|
if(colprod(2, 1) == 0)
|
||||||
|
res.push_back(T);
|
||||||
|
|
||||||
|
return res;
|
||||||
|
}
|
||||||
|
|
||||||
int fpattern::solve() {
|
int fpattern::solve() {
|
||||||
|
|
||||||
for(int a=0; a<MWDIM; a++) for(int b=0; b<MWDIM; b++) Id[a][b] = a==b?1:0;
|
for(int a=0; a<MWDIM; a++) for(int b=0; b<MWDIM; b++) Id[a][b] = a==b?1:0;
|
||||||
@ -302,6 +334,7 @@ int fpattern::solve() {
|
|||||||
rotations = WDIM == 2 ? S7 : 4;
|
rotations = WDIM == 2 ? S7 : 4;
|
||||||
local_group = WDIM == 2 ? S7 : 24;
|
local_group = WDIM == 2 ? S7 : 24;
|
||||||
|
|
||||||
|
for(dual=0; dual<3; dual++) {
|
||||||
for(int pw=1; pw<3; pw++) {
|
for(int pw=1; pw<3; pw++) {
|
||||||
if(pw>3) break;
|
if(pw>3) break;
|
||||||
Field = pw==1? Prime : Prime*Prime;
|
Field = pw==1? Prime : Prime*Prime;
|
||||||
@ -314,6 +347,20 @@ int fpattern::solve() {
|
|||||||
}
|
}
|
||||||
} else wsquare = 0;
|
} else wsquare = 0;
|
||||||
|
|
||||||
|
if(dual == 2) {
|
||||||
|
if(Field <= 10) {
|
||||||
|
vector<matrix> all_isometries = generate_isometries();
|
||||||
|
for(auto& X: all_isometries)
|
||||||
|
if(check_order(X, rotations))
|
||||||
|
for(auto& Y: all_isometries)
|
||||||
|
if(check_order(Y, 2) && check_order(mmul(X, Y), S3)) {
|
||||||
|
R = X; P = Y;
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
#ifdef EASY
|
#ifdef EASY
|
||||||
std::vector<int> sqrts(Prime, 0);
|
std::vector<int> sqrts(Prime, 0);
|
||||||
for(int k=1-Prime; k<Prime; k++) sqrts[sqr(k)] = k;
|
for(int k=1-Prime; k<Prime; k++) sqrts[sqr(k)] = k;
|
||||||
@ -336,7 +383,7 @@ int fpattern::solve() {
|
|||||||
R[0][0] = cs; R[1][1] = cs;
|
R[0][0] = cs; R[1][1] = cs;
|
||||||
R[0][1] = sn; R[1][0] = sub(0, sn);
|
R[0][1] = sn; R[1][0] = sub(0, sn);
|
||||||
|
|
||||||
if(!check_order(R, rotations)) continue;
|
if(!check_order(R, dual ? S3 : rotations)) continue;
|
||||||
|
|
||||||
if(R[0][0] == 1) continue;
|
if(R[0][0] == 1) continue;
|
||||||
|
|
||||||
@ -350,11 +397,15 @@ int fpattern::solve() {
|
|||||||
P[WDIM][0] = sh;
|
P[WDIM][0] = sh;
|
||||||
P[WDIM][WDIM] = ch;
|
P[WDIM][WDIM] = ch;
|
||||||
|
|
||||||
if(!check_order(mmul(P, R), S3)) continue;
|
if(!check_order(mmul(P, R), dual ? rotations : S3)) continue;
|
||||||
|
|
||||||
|
if(dual) R = mmul(P, R);
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
return 2;
|
return 2;
|
||||||
}
|
}
|
||||||
@ -730,8 +781,8 @@ EX void info() {
|
|||||||
for(int p=0; p<500; p++) {
|
for(int p=0; p<500; p++) {
|
||||||
fp.Prime = p;
|
fp.Prime = p;
|
||||||
if(fp.solve() == 0) {
|
if(fp.solve() == 0) {
|
||||||
printf("%4d: wsquare=%d cs=%d sn=%d ch=%d sh=%d\n",
|
printf("%4d: wsquare=%d cs=%d sn=%d ch=%d sh=%d dual=%d\n",
|
||||||
p, fp.wsquare, fp.cs, fp.sn, fp.ch, fp.sh);
|
p, fp.wsquare, fp.cs, fp.sn, fp.ch, fp.sh, fp.dual);
|
||||||
cases++;
|
cases++;
|
||||||
if(!fp.easy(fp.cs) || !fp.easy(fp.sn) || !fp.easy(fp.ch) || !fp.easy(fp.sn))
|
if(!fp.easy(fp.cs) || !fp.easy(fp.sn) || !fp.easy(fp.ch) || !fp.easy(fp.sn))
|
||||||
hard++;
|
hard++;
|
||||||
@ -796,11 +847,11 @@ EX int subpathorder = currfp.order(currfp.matrices[subpathid]);
|
|||||||
// extra information for field quotient extra configuration
|
// extra information for field quotient extra configuration
|
||||||
|
|
||||||
EX vector<fgeomextra> fgeomextras = {
|
EX vector<fgeomextra> fgeomextras = {
|
||||||
fgeomextra(gNormal, 3),
|
fgeomextra(gNormal, 4),
|
||||||
fgeomextra(gOctagon, 1),
|
fgeomextra(gOctagon, 1),
|
||||||
fgeomextra(g45, 0),
|
fgeomextra(g45, 1),
|
||||||
fgeomextra(g46, 3),
|
fgeomextra(g46, 5),
|
||||||
fgeomextra(g47, 0),
|
fgeomextra(g47, 1),
|
||||||
/* fgeomextra(gSphere, 0),
|
/* fgeomextra(gSphere, 0),
|
||||||
fgeomextra(gSmallSphere, 0), -> does not find the prime
|
fgeomextra(gSmallSphere, 0), -> does not find the prime
|
||||||
fgeomextra(gEuclid, 0),
|
fgeomextra(gEuclid, 0),
|
||||||
@ -824,6 +875,7 @@ EX void nextPrime(fgeomextra& ex) {
|
|||||||
fp.build();
|
fp.build();
|
||||||
int cells = fp.matrices.size() / S7;
|
int cells = fp.matrices.size() / S7;
|
||||||
ex.primes.emplace_back(primeinfo{nextprime, cells, (bool) fp.wsquare});
|
ex.primes.emplace_back(primeinfo{nextprime, cells, (bool) fp.wsquare});
|
||||||
|
ex.dualval.emplace_back(fp.dual);
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
nextprime++;
|
nextprime++;
|
||||||
@ -831,9 +883,13 @@ EX void nextPrime(fgeomextra& ex) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
EX void nextPrimes(fgeomextra& ex) {
|
EX void nextPrimes(fgeomextra& ex) {
|
||||||
while(isize(ex.primes) < 4)
|
while(true) {
|
||||||
|
int nodual = 0;
|
||||||
|
for(int a: ex.dualval) if(!a) nodual++;
|
||||||
|
if(nodual >= 4) break;
|
||||||
nextPrime(ex);
|
nextPrime(ex);
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
EX void enableFieldChange() {
|
EX void enableFieldChange() {
|
||||||
fgeomextra& gxcur = fgeomextras[current_extra];
|
fgeomextra& gxcur = fgeomextras[current_extra];
|
||||||
|
@ -48,9 +48,10 @@ void showQuotientConfig() {
|
|||||||
dialog::addBoolItem(ginf[g.base].tiling_name, g.base == gxcur.base, 'a'+i);
|
dialog::addBoolItem(ginf[g.base].tiling_name, g.base == gxcur.base, 'a'+i);
|
||||||
}
|
}
|
||||||
nextPrimes(gxcur);
|
nextPrimes(gxcur);
|
||||||
|
string stars[3] = {"", "*", "**"};
|
||||||
for(int i=0; i<isize(gxcur.primes); i++) {
|
for(int i=0; i<isize(gxcur.primes); i++) {
|
||||||
auto& p = gxcur.primes[i];
|
auto& p = gxcur.primes[i];
|
||||||
dialog::addBoolItem(XLAT("order %1%2 (non-bitruncated cells: %3)", its(p.p), p.squared ? "²" : "", its(p.cells)), i == gxcur.current_prime_id, 'A'+i);
|
dialog::addBoolItem(XLAT("order %1%2 (pure cells: %3)", its(p.p), p.squared ? "²" : "", its(p.cells)) + stars[gxcur.dualval[i]], i == gxcur.current_prime_id, 'A'+i);
|
||||||
}
|
}
|
||||||
|
|
||||||
if(isize(gxcur.primes) < 6) {
|
if(isize(gxcur.primes) < 6) {
|
||||||
|
Loading…
Reference in New Issue
Block a user