1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2025-11-08 09:42:59 +00:00

major rewrite: unified the common parts of heptagon and cell via struct connection<T> and struct walker<T>

This commit is contained in:
Zeno Rogue
2018-08-18 00:46:45 +02:00
parent a5a3cf1c87
commit 682f804576
50 changed files with 1848 additions and 1921 deletions

View File

@@ -37,7 +37,7 @@ transmatrix master_relative(cell *c, bool get_inverse) {
}
}
else if(!nonbitrunc && !euclid) {
for(int d=0; d<S7; d++) if(c->master->c7->mov[d] == c)
for(int d=0; d<S7; d++) if(c->master->c7->move(d) == c)
return (get_inverse?invhexmove:hexmove)[d];
return Id;
}
@@ -96,7 +96,7 @@ transmatrix calc_relative_matrix(cell *c2, cell *c1, const hyperpoint& point_hin
t = eumovedir(2+i/2) * eumovedir(2+(i+1)/2) * t;
else
t = eumovedir(2+i/2) * t;
if(c2->mirror(i)) mirrors++;
if(c2->c.mirror(i)) mirrors++;
c2 = c3;
goto approach;
}
@@ -122,16 +122,16 @@ transmatrix calc_relative_matrix(cell *c2, cell *c1, const hyperpoint& point_hin
if(quotient & qSMALL) {
transmatrix T;
ld bestdist = 1e9;
for(int d=0; d<S7; d++) if(h2->move[d]) {
int sp = h2->spin(d);
for(int d=0; d<S7; d++) if(h2->move(d)) {
int sp = h2->c.spin(d);
transmatrix S = heptmove[sp] * spin(2*M_PI*d/S7);
if(h2->move[d] == h1) {
if(h2->move(d) == h1) {
transmatrix T1 = gm * S * where;
auto curdist = hdist(tC0(T1), point_hint);
if(curdist < bestdist) T = T1, bestdist = curdist;
}
for(int e=0; e<S7; e++) if(h2->move[d]->move[e] == h1) {
int sp2 = h2->move[d]->spin(e);
for(int e=0; e<S7; e++) if(h2->move(d)->move(e) == h1) {
int sp2 = h2->move(d)->c.spin(e);
transmatrix T1 = gm * heptmove[sp2] * spin(2*M_PI*e/S7) * S * where;
auto curdist = hdist(tC0(T1), point_hint);
if(curdist < bestdist) T = T1, bestdist = curdist;
@@ -139,28 +139,28 @@ transmatrix calc_relative_matrix(cell *c2, cell *c1, const hyperpoint& point_hin
}
if(bestdist < 1e8) return T;
}
for(int d=0; d<S7; d++) if(h2->move[d] == h1) {
int sp = h2->spin(d);
for(int d=0; d<S7; d++) if(h2->move(d) == h1) {
int sp = h2->c.spin(d);
return gm * heptmove[sp] * spin(2*M_PI*d/S7) * where;
}
if(geometry == gFieldQuotient) {
int bestdist = 1000, bestd = 0;
for(int d=0; d<S7; d++) {
int dist = celldistance(h2->move[d]->c7, c1);
int dist = celldistance(h2->move(d)->c7, c1);
if(dist < bestdist) bestdist = dist, bestd = d;
}
int sp = h2->spin(bestd);
int sp = h2->c.spin(bestd);
where = heptmove[sp] * spin(2*M_PI*bestd/S7) * where;
h2 = h2->move[bestd];
h2 = h2->move(bestd);
}
else if(h1->distance < h2->distance) {
int sp = h2->spin(0);
h2 = h2->move[0];
int sp = h2->c.spin(0);
h2 = h2->move(0);
where = heptmove[sp] * where;
}
else {
int sp = h1->spin(0);
h1 = h1->move[0];
int sp = h1->c.spin(0);
h1 = h1->move(0);
gm = gm * invheptmove[sp];
}
}
@@ -180,14 +180,14 @@ transmatrix calc_relative_matrix(cell *c2, cell *c1, const hyperpoint& point_hin
transmatrix &ggmatrix(cell *c) {
transmatrix& t = gmatrix[c];
if(t[2][2] == 0) {
if(torus && centerover.c)
t = calc_relative_matrix(c, centerover.c, C0);
if(torus && centerover.at)
t = calc_relative_matrix(c, centerover.at, C0);
else if(euclid) {
if(!centerover.c) centerover = cwt;
if(!centerover.at) centerover = cwt;
t = View * eumove(cell_to_vec(c) - cellwalker_to_vec(centerover));
}
else
t = actualV(viewctr, cview()) * calc_relative_matrix(c, viewctr.h->c7, C0);
t = actualV(viewctr, cview()) * calc_relative_matrix(c, viewctr.at->c7, C0);
}
return t;
}
@@ -200,21 +200,21 @@ transmatrix calc_relative_matrix_help(cell *c, heptagon *h1) {
auto li = gp::get_local_info(c);
where = gp::Tf[li.last_dir][li.relative.first&31][li.relative.second&31][fix6(li.total_dir)];
}
else if(!nonbitrunc) for(int d=0; d<S7; d++) if(h2->c7->mov[d] == c)
else if(!nonbitrunc) for(int d=0; d<S7; d++) if(h2->c7->move(d) == c)
where = hexmove[d];
// always add to last!
while(h1 != h2) {
for(int d=0; d<S7; d++) if(h1->move[d] == h2) printf("(adj) ");
for(int d=0; d<S7; d++) if(h1->move(d) == h2) printf("(adj) ");
if(h1->distance < h2->distance) {
int sp = h2->spin(0);
int sp = h2->c.spin(0);
printf("A%d ", sp);
h2 = h2->move[0];
h2 = h2->move(0);
where = heptmove[sp] * where;
}
else {
int sp = h1->spin(0);
int sp = h1->c.spin(0);
printf("B%d ", sp);
h1 = h1->move[0];
h1 = h1->move(0);
gm = gm * invheptmove[sp];
}
}
@@ -262,16 +262,14 @@ void virtualRebase(cell*& base, T& at, bool tohex, const U& check) {
transmatrix bestV;
for(int d=0; d<S7; d++) {
heptspin hs;
hs.h = h;
hs.spin = d;
heptspin hs(h, d, false);
heptspin hs2 = hs + wstep;
transmatrix V2 = spin(-hs2.spin*2*M_PI/S7) * invheptmove[d];
double newz = check(V2 * at) [2];
if(newz < currz) {
currz = newz;
bestV = V2;
newbase = hs2.h->c7;
newbase = hs2.at->c7;
}
}
@@ -282,7 +280,7 @@ void virtualRebase(cell*& base, T& at, bool tohex, const U& check) {
else {
if(tohex && !nonbitrunc) for(int d=0; d<S7; d++) {
cell *c = createMov(base, d);
transmatrix V2 = spin(-base->spn(d)*2*M_PI/S6) * invhexmove[d];
transmatrix V2 = spin(-base->c.spin(d)*2*M_PI/S6) * invhexmove[d];
double newz = check(V2 *at) [2];
if(newz < currz) {
currz = newz;
@@ -310,14 +308,14 @@ void virtualRebase(cell*& base, hyperpoint& h, bool tohex) {
}
double cellgfxdist(cell *c, int i) {
if(gp::on || irr::on) return hdist0(tC0(calc_relative_matrix(c->mov[i], c, i)));
if(gp::on || irr::on) return hdist0(tC0(calc_relative_matrix(c->move(i), c, i)));
return nonbitrunc ? tessf * gp::scale : (c->type == 6 && (i&1)) ? hexhexdist : crossf;
}
transmatrix cellrelmatrix(cell *c, int i) {
if(gp::on) return calc_relative_matrix(c->mov[i], c, i);
if(gp::on) return calc_relative_matrix(c->move(i), c, i);
double d = cellgfxdist(c, i);
return ddspin(c, i) * xpush(d) * iddspin(c->mov[i], c->spin(i), euclid ? 0 : S42);
return ddspin(c, i) * xpush(d) * iddspin(c->move(i), c->c.spin(i), euclid ? 0 : S42);
}
double randd() { return (rand() + .5) / (RAND_MAX + 1.); }
@@ -375,9 +373,9 @@ hyperpoint get_corner_position(cell *c, int cid, ld cf) {
hyperpoint hypercorner(cell *c, gp::local_info& li, int i) {
cellwalker cw(c, i);
cw += wstep;
transmatrix cwm = calc_relative_matrix(cw.c, c, i);
transmatrix cwm = calc_relative_matrix(cw.at, c, i);
if(elliptic && cwm[2][2] < 0) cwm = centralsym * cwm;
return cwm * gp::get_corner_position(cw.c, (cw+2).spin);
return cwm * gp::get_corner_position(cw.at, (cw+2).spin);
}
hyperpoint midcorner(cell *c, int i, ld v) {
@@ -407,7 +405,7 @@ hyperpoint nearcorner(cell *c, int i) {
if(gp::on) {
cellwalker cw(c, i);
cw += wstep;
transmatrix cwm = calc_relative_matrix(cw.c, c, i);
transmatrix cwm = calc_relative_matrix(cw.at, c, i);
if(elliptic && cwm[2][2] < 0) cwm = centralsym * cwm;
return cwm * C0;
}
@@ -447,9 +445,9 @@ hyperpoint farcorner(cell *c, int i, int which) {
cellwalker cw(c, i);
int hint = cw.spin;
cw += wstep;
transmatrix cwm = calc_relative_matrix(cw.c, c, hint);
transmatrix cwm = calc_relative_matrix(cw.at, c, hint);
// hyperpoint nfar = cwm*C0;
auto li1 = gp::get_local_info(cw.c);
auto li1 = gp::get_local_info(cw.at);
if(which == 0)
return cwm * get_corner_position(li1, (cw+2).spin);
if(which == 1)