mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2025-01-23 15:36:59 +00:00
support for {3,5,x} and ultra-vertex honeycombs
This commit is contained in:
parent
eb5023cfbb
commit
57d69e639d
@ -122,20 +122,19 @@ struct geometry_information {
|
||||
/** basic parameters for 3D geometries */
|
||||
map<int, int> close_distances;
|
||||
|
||||
int loop;
|
||||
int face;
|
||||
int loop, face, schmid;
|
||||
|
||||
vector<hyperpoint> cellshape;
|
||||
vector<hyperpoint> vertices_only;
|
||||
|
||||
transmatrix spins[12], adjmoves[12];
|
||||
transmatrix spins[32], adjmoves[32];
|
||||
|
||||
ld adjcheck;
|
||||
ld strafedist;
|
||||
bool dirs_adjacent[16][16];
|
||||
bool dirs_adjacent[32][32];
|
||||
|
||||
/** \brief for adjacent directions a,b, next_dir[a][b] is the next direction adjacent to a, in (counter?)clockwise order from b */
|
||||
int next_dir[16][16];
|
||||
int next_dir[32][32];
|
||||
|
||||
vector<pair<string, string> > rels;
|
||||
int xp_order, r_order, rx_order;
|
||||
|
192
reg3.cpp
192
reg3.cpp
@ -47,103 +47,129 @@ EX namespace reg3 {
|
||||
auto& adjcheck = cgi.adjcheck;
|
||||
auto& dirs_adjacent = cgi.dirs_adjacent;
|
||||
|
||||
if(S7 == 4) face = 3;
|
||||
int& mid = cgi.schmid;
|
||||
mid = 3;
|
||||
|
||||
face = 3;
|
||||
if(S7 == 6) face = 4;
|
||||
if(S7 == 8) mid = 4;
|
||||
if(S7 == 12) face = 5;
|
||||
if(S7 == 8) face = 3;
|
||||
if(S7 == 20) mid = 5;
|
||||
/* icosahedron not implemented */
|
||||
loop = ginf[geometry].tiling_name[5] - '0';
|
||||
DEBB(DF_GEOM, ("face = ", face, " loop = ", loop, " S7 = ", S7));
|
||||
DEBB(DF_GEOM, ("face = ", face, " loop = ", loop, " S7 = ", S7));
|
||||
|
||||
/* dual_angle : the angle between two face centers in the dual cell */
|
||||
ld dual_angle = binsearch(0, M_PI, [&] (ld d) {
|
||||
hyperpoint h0 = cpush(0, 1) * C0;
|
||||
hyperpoint h1 = cspin(0, 1, d) * h0;
|
||||
hyperpoint h2 = cspin(1, 2, 2*M_PI/loop) * h1;
|
||||
return hdist(h0, h1) > hdist(h1, h2);
|
||||
});
|
||||
|
||||
/* angle_between_faces : the distance between two face centers of cells */
|
||||
ld angle_between_faces = binsearch(0, M_PI, [&] (ld d) {
|
||||
hyperpoint h0 = cpush(0, 1) * C0;
|
||||
hyperpoint h1 = cspin(0, 1, d) * h0;
|
||||
hyperpoint h2 = cspin(1, 2, 2*M_PI/face) * h1;
|
||||
return hdist(h0, h1) > hdist(h1, h2);
|
||||
});
|
||||
|
||||
if(S7 == 8) {
|
||||
angle_between_faces = min(angle_between_faces, M_PI - angle_between_faces);
|
||||
/* 24-cell is a special case because it is the only one with '4' in the middle of the Schlaefli symbol. */
|
||||
/* The computations above assume 3 */
|
||||
hyperpoint h1 = hpxy3(.5,.5,.5);
|
||||
hyperpoint h2 = hpxy3(.5,.5,-.5);
|
||||
dual_angle = hdist(h1, h2);
|
||||
}
|
||||
|
||||
DEBB(DF_GEOM, ("angle between faces = ", angle_between_faces));
|
||||
DEBB(DF_GEOM, ("dual angle = ", dual_angle));
|
||||
|
||||
ld inp_length = binsearch(0, 1.55, [&] (ld d) {
|
||||
hyperpoint h = xpush(-d) * spin(2*M_PI/face) * xpush0(d);
|
||||
ld alpha = M_PI - atan2(-h[1], h[0]);
|
||||
return (alpha < dual_angle / 2) ? hyperbolic : sphere;
|
||||
});
|
||||
|
||||
DEBB(DF_GEOM, ("inp length = ", inp_length));
|
||||
|
||||
ld edge_length = hdist(xpush0(inp_length), spin(2*M_PI/face) * xpush0(inp_length));
|
||||
if(S7 == 8) edge_length = hdist(normalize(hpxyz3(1,1,0,0)), normalize(hpxyz3(1,0,1,0)));
|
||||
DEBB(DF_GEOM, ("edge length = ", edge_length));
|
||||
ld angle_between_faces, hcrossf;
|
||||
|
||||
/* frontal face direction */
|
||||
hyperpoint h0 = xtangent(1);
|
||||
hyperpoint h0, h1, h2, h3, h012, h013;
|
||||
|
||||
if(1) {
|
||||
dynamicval<eGeometry> dg(geometry, gSphere);
|
||||
angle_between_faces = edge_of_triangle_with_angles(2*M_PI/mid, M_PI/face, M_PI/face);
|
||||
|
||||
h0 = xtangent(1);
|
||||
h1 = cspin(0, 1, angle_between_faces) * h0;
|
||||
h2 = cspin(1, 2, 2*M_PI/face) * h1;
|
||||
h3 = cspin(1, 2, -2*M_PI/face) * h1;
|
||||
|
||||
/* three faces adjacent to frontal face direction */
|
||||
hyperpoint h1 = cspin(0, 1, angle_between_faces) * h0;
|
||||
hyperpoint h2 = cspin(1, 2, 2*M_PI/face) * h1;
|
||||
hyperpoint h3 = cspin(1, 2, -2*M_PI/face) * h1;
|
||||
hcrossf = edge_of_triangle_with_angles(M_PI/2, M_PI/mid, M_PI/face);
|
||||
|
||||
/* directions of vertices [h0,h1,h2] and [h0,h1,h3] */
|
||||
hyperpoint dir_v2 = S7 == 8 ? (h1 + h2) : (h0 + h1 + h2);
|
||||
hyperpoint dir_v3 = S7 == 8 ? (h1 + h3) : (h0 + h1 + h3);
|
||||
|
||||
DEBB(DF_GEOM, ("dir_v2 = ", dir_v2));
|
||||
DEBB(DF_GEOM, ("dir_v3 = ", dir_v3));
|
||||
|
||||
dir_v2 = tangent_length(dir_v2, 1);
|
||||
dir_v3 = tangent_length(dir_v3, 1);
|
||||
|
||||
DEBB(DF_GEOM, ("S7 = ", S7));
|
||||
DEBB(DF_GEOM, ("dir_v2 = ", dir_v2));
|
||||
DEBB(DF_GEOM, ("dir_v3 = ", dir_v3));
|
||||
|
||||
/* the distance from cell center to cell vertex */
|
||||
ld vertex_distance;
|
||||
|
||||
if(cgflags & qIDEAL) {
|
||||
vertex_distance = 13;
|
||||
h012 = cspin(1, 2, M_PI/face) * cspin(0, 1, hcrossf) * h0;
|
||||
h013 = cspin(1, 2, -M_PI/face) * cspin(0, 1, hcrossf) * h0;
|
||||
}
|
||||
|
||||
else {
|
||||
vertex_distance = binsearch(0, M_PI, [&] (ld d) {
|
||||
// sometimes breaks in elliptic
|
||||
dynamicval<eGeometry> g(geometry, elliptic ? gCell120 : geometry);
|
||||
hyperpoint v2 = direct_exp(dir_v2 * d);
|
||||
hyperpoint v3 = direct_exp(dir_v3 * d);
|
||||
return hdist(v2, v3) >= edge_length;
|
||||
});
|
||||
}
|
||||
for(auto hx: {&h0, &h1, &h2, &h3, &h012, &h013}) (*hx)[3] = 0;
|
||||
|
||||
DEBB(DF_GEOM, ("vertex_distance = ", vertex_distance));
|
||||
ld klein_scale = binsearch(0, 10, [&] (ld d) {
|
||||
dynamicval<eGeometry> g(geometry, elliptic ? gCell120 : geometry);
|
||||
|
||||
/* center of an edge */
|
||||
hyperpoint u = C0 + (h012 + h013) * d / 2;
|
||||
|
||||
if(material(u) <= 0) {
|
||||
println(hlog, "klein_scale = ", d, " bad");
|
||||
return true;
|
||||
}
|
||||
|
||||
u = normalize(u);
|
||||
|
||||
hyperpoint h = C0 * face;
|
||||
for(int i=0; i<face; i++) h += d * (cspin(1, 2, M_PI*2*i/face) * h012);
|
||||
h = normalize(h);
|
||||
|
||||
hyperpoint h2 = rspintox(h) * xpush0(2 * hdist0(h));
|
||||
|
||||
h2 = spintox(u) * h2;
|
||||
u = spintox(u) * u;
|
||||
|
||||
h2 = gpushxto0(u) * h2;
|
||||
u = gpushxto0(u) * u;
|
||||
|
||||
ld x = hypot(h2[1], h2[2]);
|
||||
ld y = h2[0];
|
||||
|
||||
ld loop2 = 360 / (90 + atan(y/x) / degree);
|
||||
|
||||
println(hlog, "d=", d, " loop2= ", loop2);
|
||||
|
||||
if(sphere) return loop2 < loop;
|
||||
return loop2 > loop;
|
||||
});
|
||||
|
||||
/* precise ideal vertex */
|
||||
if(klein_scale > 1-1e-5 && klein_scale < 1+1e-5) klein_scale = 1;
|
||||
|
||||
/* actual vertex */
|
||||
hyperpoint v2 = direct_exp(dir_v2 * vertex_distance);
|
||||
hyperpoint v2 = C0 + klein_scale * h012;
|
||||
|
||||
hyperpoint mid = Hypc;
|
||||
for(int i=0; i<face; i++) mid += cspin(1, 2, 2*i*M_PI/face) * v2;
|
||||
mid = normalize(mid);
|
||||
ld between_centers = 2 * hdist0(mid);
|
||||
hyperpoint midface = Hypc;
|
||||
for(int i=0; i<face; i++) midface += cspin(1, 2, 2*i*M_PI/face) * v2;
|
||||
midface = normalize(midface);
|
||||
ld between_centers = 2 * hdist0(midface);
|
||||
DEBB(DF_GEOM, ("between_centers = ", between_centers));
|
||||
|
||||
if(hyperbolic && klein_scale > 1) {
|
||||
transmatrix T = spintox(h012);
|
||||
hyperpoint a = T * (C0 + klein_scale * h012);
|
||||
hyperpoint b = T * (C0 + klein_scale * h013);
|
||||
ld f0 = 0.5;
|
||||
println(hlog, "a=", a, " b=", b);
|
||||
ld f1 = binsearch(0.5, 1, [&] (ld d) {
|
||||
hyperpoint c = lerp(b, a, d);
|
||||
println(hlog, "d=", d, " c= ", c, " material = ", material(c));
|
||||
return material(c) <= 0;
|
||||
});
|
||||
println(hlog, "f1 = ", f1);
|
||||
auto f = [&] (ld d) {
|
||||
hyperpoint c = lerp(b, a, d);
|
||||
c = normalize(c);
|
||||
return c[1] * c[1] + c[2] * c[2];
|
||||
};
|
||||
for(int it=0; it<100; it++) {
|
||||
ld fa = (f0*2+f1) / 3;
|
||||
ld fb = (f0*1+f1*2) / 3;
|
||||
println(hlog, "f(", fa, ") = ", f(fa), " f(", fb, ") = ", f(fb));
|
||||
if(f(fa) > f(fb)) f0 = fa;
|
||||
else f1 = fb;
|
||||
}
|
||||
|
||||
hyperpoint c = lerp(b, a, f0);
|
||||
c = normalize(c);
|
||||
c[1] = c[2] = 0;
|
||||
c = normalize(c);
|
||||
mirrordist = hdist0(c);
|
||||
println(hlog, "mirrordist = ", mirrordist);
|
||||
}
|
||||
|
||||
if(S7 == 20) {
|
||||
spins[0] = Id;
|
||||
spins[1] = cspin(0, 1, angle_between_faces) * cspin(1, 2, M_PI);
|
||||
spins[2] = spins[1] * cspin(1, 2, -2 * M_PI/face) * spins[1];
|
||||
spins[3] = spins[1] * cspin(1, 2, +2 * M_PI/face) * spins[1];
|
||||
for(int a=4; a<10; a++) spins[a] = cspin(1, 2, 2*M_PI/face) * spins[a-3];
|
||||
for(int a=S7/2; a<S7; a++) spins[a] = spins[a-S7/2] * cspin(0, 1, M_PI);
|
||||
}
|
||||
|
||||
if(S7 == 12 || S7 == 8) {
|
||||
spins[0] = Id;
|
||||
@ -1536,8 +1562,8 @@ EX void generate_fulls() {
|
||||
};
|
||||
|
||||
cgi.full_P = cgi.adjmoves[0];
|
||||
cgi.full_R = S7 == 8 ? cons(1, 7, 0) : cons(1, 2, 0);
|
||||
cgi.full_X = S7 == 8 ? cons(1, 0, 6) : S7 == 6 ? cons(1, 0, 5) : cons(1, 0, cgi.face);
|
||||
cgi.full_R = S7 == 8 ? cons(1, 7, 0) : S7 == 20 ? cons(1,2,6) : cons(1, 2, 0);
|
||||
cgi.full_X = S7 == 8 ? cons(1, 0, 6) : S7 == 6 ? cons(1, 0, 5) : S7 == 20 ? cons(1,0,7) : cons(1, 0, cgi.face);
|
||||
|
||||
cgi.xp_order = matrix_order(cgi.full_X * cgi.full_P);
|
||||
cgi.r_order = matrix_order(cgi.full_R);
|
||||
|
Loading…
Reference in New Issue
Block a user