1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2025-01-22 23:17:04 +00:00

separate color set for mirrored tiles in arb/arcm

This commit is contained in:
Zeno Rogue 2022-10-06 09:57:18 +02:00
parent 30839fdb15
commit 3369adfc98
2 changed files with 33 additions and 3 deletions

View File

@ -45,6 +45,8 @@ constexpr ld INFINITE_BOTH = -3;
struct shape {
/** index in the arbi_tiling::shapes */
int id;
/** index in the original file */
int orig_id;
/** flags such as sfLINE and sfPH */
int flags;
/** list of vertices in the usual convention */
@ -79,6 +81,8 @@ struct shape {
vector<vector<ld>> vertex_angles;
/** football types */
int football_type;
/** is it a mirrored version of an original tile */
bool is_mirrored;
};
struct slider {
@ -135,6 +139,8 @@ struct arbi_tiling {
int min_valence, max_valence;
bool is_football_colorable;
bool was_unmirrored;
bool was_split_for_football;
geometryinfo1& get_geometry();
eGeometryClass get_class() { return get_geometry().kind; }
@ -342,6 +348,8 @@ EX void load_tile(exp_parser& ep, arbi_tiling& c, bool unit) {
c.shapes.emplace_back();
auto& cc = c.shapes.back();
cc.id = isize(c.shapes) - 1;
cc.orig_id = cc.id;
cc.is_mirrored = false;
cc.flags = 0;
cc.repeat_value = 1;
while(ep.next() != ')') {
@ -442,8 +450,10 @@ EX void unmirror(arbi_tiling& c) {
int s = isize(sh);
for(int i=0; i<s; i++)
sh.push_back(sh[i]);
for(int i=0; i<2*s; i++)
for(int i=0; i<2*s; i++) {
sh[i].id = i;
if(i >= s) sh[i].is_mirrored = true;
}
for(int i=s; i<s+s; i++) {
for(auto& v: sh[i].vertices)
v[1] = -v[1];
@ -686,6 +696,7 @@ EX void check_football_colorability(arbi_tiling& c) {
}
c.is_football_colorable = true;
c.was_split_for_football = true;
for(auto&sh: c.shapes)
if(sh.football_type == 7)
c.is_football_colorable = false;
@ -709,6 +720,7 @@ EX void check_football_colorability(arbi_tiling& c) {
int ni = new_indices[i][t];
if(ni == -1) continue;
auto& sh = c.shapes[ni];
sh.id = ni;
for(int j=0; j<isize(sh); j++) {
auto &co = sh.connections[j];
auto assign = [&] (int tt) {
@ -782,6 +794,8 @@ EX void set_defaults(arb::arbi_tiling& c, bool keep_sliders, string fname) {
c.yendor_backsteps = 0;
c.is_star = false;
c.is_combinatorial = false;
c.was_unmirrored = false;
c.was_split_for_football = false;
c.shapes.clear();
if(!keep_sliders) {
c.sliders.clear();

View File

@ -1544,6 +1544,13 @@ EX map<char, colortable> colortables = {
0xF08040, 0xF04080, 0x40F080,
0x4080F0, 0x8040F0, 0x80F040,
0xFFD500 }},
{'M', { // mirrored versions of 'A'
0xF04060, 0x40F060, 0x4040D0,
0xD0D040, 0xD000F0, 0x00D040,
0xC0C0E0, 0x404060, 0x8080A0,
0xF08060, 0xF040A0, 0x40F0A0,
0x4080D0, 0x8040D0, 0x80F060,
0xFFD540 }},
{'B', {
// trying to get colors as in Wikipedia [ https://en.wikipedia.org/wiki/Euclidean_tilings_by_convex_regular_polygons#k-uniform_tilings ]
0, 0, 0xFFFFFF, 0xFFFF00,
@ -1784,9 +1791,18 @@ EX namespace patterns {
#endif
case 'A':
#if CAP_ARCM
if(arcm::in()) return colortables['A'][arcm::current.tilegroup[arcm::id_of(c->master)]];
if(arcm::in()) {
int id = arcm::current.tilegroup[arcm::id_of(c->master)];
return colortables[(id&1) ? 'M' : 'A'][id/2];
}
#endif
if(arb::in()) return colortables['A'][shvid(c) + c->master->emeraldval * isize(arb::current.shapes)];
if(arb::in()) {
int id = shvid(c);
auto& sh = arb::current.shapes[id];
int oid = sh.orig_id;
bool mirrored = c->master->emeraldval || sh.is_mirrored;
return colortables[mirrored ? 'M' : 'A'][oid];
}
return colortables['A'][shvid(c)];
case 'B':
if(arb::is_apeirogonal(c)) return apeirogonal_color;