1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2024-12-25 01:20:37 +00:00

rogueviz:: added Impossible Triangle slides

This commit is contained in:
Zeno Rogue 2020-04-08 00:39:44 +02:00
parent 24f0f1b707
commit 2fbccb4a84
2 changed files with 89 additions and 9 deletions

View File

@ -21,3 +21,4 @@
#include "fullnet.cpp" #include "fullnet.cpp"
#include "snow.cpp" #include "snow.cpp"
#include "impossible-ring.cpp" #include "impossible-ring.cpp"
#include "triangle.cpp"

View File

@ -1,4 +1,4 @@
#include "../hyper.h" #include "rogueviz.h"
// Impossible Triangle visualization // Impossible Triangle visualization
@ -16,14 +16,13 @@
// ./hyper -geo Nil -canvas x -tri-net // ./hyper -geo Nil -canvas x -tri-net
namespace hr { namespace rogueviz {
namespace itri {
bool on = false;
bool net = false; bool net = false;
EX hyperpoint lerp(hyperpoint a0, hyperpoint a1, ld x) {
return a0 + (a1-a0) * x;
}
hyperpoint operator+(hyperpoint x) { return x; } hyperpoint operator+(hyperpoint x) { return x; }
// do not change this // do not change this
@ -49,6 +48,8 @@ struct triangledata {
struct trianglemaker { struct trianglemaker {
geometry_information *icgi;
map<cell*, vector<triangledata> > tds; map<cell*, vector<triangledata> > tds;
array<hpcshape, 6> ptriangle; array<hpcshape, 6> ptriangle;
@ -61,6 +62,8 @@ struct trianglemaker {
void init() { void init() {
icgi = &cgi;
ld rest = sqrt(8/9.); ld rest = sqrt(8/9.);
ld rex = sqrt(1 - 1/9. - pow(rest/2., 2)); ld rex = sqrt(1 - 1/9. - pow(rest/2., 2));
@ -319,6 +322,11 @@ struct trianglemaker {
trianglemaker *mkr; trianglemaker *mkr;
void reset() {
if(mkr) delete mkr;
mkr = nullptr;
}
// Magic Cube (aka Rubik Cube) colors // Magic Cube (aka Rubik Cube) colors
color_t magiccolors[6] = { 0xFFFF00FF, 0xFFFFFFFF, 0x0000FFFF, 0x00FF00FF, 0xFF0000FF, 0xFF8000FF}; color_t magiccolors[6] = { 0xFFFF00FF, 0xFFFFFFFF, 0x0000FFFF, 0x00FF00FF, 0xFF0000FF, 0xFF8000FF};
@ -451,6 +459,10 @@ color_t tcolors[3] = { 0xFF0000FF, 0x00FF00FF, 0x0000FFFF };
bool draw_ptriangle(cell *c, const transmatrix& V) { bool draw_ptriangle(cell *c, const transmatrix& V) {
if(!on) return false;
if(mkr && mkr->icgi != &cgi) reset();
if(!mkr) { mkr = new trianglemaker; mkr->init(); if(!mkr) { mkr = new trianglemaker; mkr->init();
growthrate(); growthrate();
} }
@ -469,6 +481,33 @@ bool draw_ptriangle(cell *c, const transmatrix& V) {
return false; return false;
} }
void slide_itri(tour::presmode mode, int id) {
using namespace tour;
setCanvas(mode, '0');
if(mode == pmStart) {
stop_game();
set_geometry(gNil);
tour::slide_backup(mapeditor::drawplayer, false);
tour::slide_backup(on, true);
tour::slide_backup(net, id == 2 ? true : false);
tour::slide_backup(smooth_scrolling, true);
if(id == 0)
tour::slide_backup(nilv::nilperiod, make_array(3, 3, 3));
if(id == 1) {
tour::slide_backup(nilv::nilperiod, make_array(1, 10, 1));
tour::slide_backup(nilv::nilwidth, .9);
tour::slide_backup(how, 32);
tour::slide_backup(how1, 31);
tour::slide_backup(isteps, 992);
}
/* do nothing for id == 2 */
start_game();
playermoved = false;
tour::on_restore(reset);
}
}
auto hchook = addHook(hooks_drawcell, 100, draw_ptriangle) auto hchook = addHook(hooks_drawcell, 100, draw_ptriangle)
@ -482,12 +521,52 @@ auto hchook = addHook(hooks_drawcell, 100, draw_ptriangle)
shift(); isteps = argi(); shift(); isteps = argi();
} }
else if(argis("-tri-net")) { else if(argis("-tri-net")) {
net = true; on = true; net = true;
}
else if(argis("-tri-net")) {
on = true; net = false;
} }
else return 1; else return 1;
return 0; return 0;
})
+ addHook(rvtour::hooks_build_rvtour, 141, [] (vector<tour::slide>& v) {
using namespace tour;
v.push_back(
tour::slide{"Impossible architecture in Nil/impossible triangle", 18, LEGAL::NONE | QUICKGEO,
"This form of impossible triangle was first created by Oscar Reutersvärd. "
"It was later independently discovered by Lionel Penrose and Roger Penrose, and popularized by M. C. Escher.\n\n"
"Move with mouse/arrows/PgUpDn. Press '5' to enable animation, 'o' to change ring size.",
[] (presmode mode) {
slide_itri(mode, 0);
}});
v.push_back(
tour::slide{"Impossible architecture in Nil/impossible triangle chainmail", 18, LEGAL::NONE | QUICKGEO,
"Here we try to link the impossible triangles into a construction reminiscent of a chainmail.",
[] (presmode mode) {
slide_itri(mode, 1);
}});
v.push_back(
tour::slide{"Impossible architecture in Nil/impossible triangle network", 18, LEGAL::NONE | QUICKGEO,
"It is not possible to reconstruct Escher's Waterfall in Nil geometry, because one of the three triangles there "
"has opposite orientation. For this reason, that one triangle would not connect correctly. Penrose triangles "
"in Nil would not create a planar structure, but rather a three-dimensional one. This slide shows the picture. "
"Note that, while the structure is three-dimensional, the number of nodes connected in d steps grows as the "
"fourth power of d.",
[] (presmode mode) {
slide_itri(mode, 2);
}});
}); });
}
} }