mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2025-01-25 16:37:00 +00:00
advanced Hypersian Rug (no options yet)
This commit is contained in:
parent
ae70662495
commit
0a9f69f0ef
@ -82,6 +82,10 @@ ld intvalxy(const hyperpoint &h1, const hyperpoint &h2) {
|
||||
return squar(h1[0]-h2[0]) + squar(h1[1]-h2[1]);
|
||||
}
|
||||
|
||||
ld intvalxyz(const hyperpoint &h1, const hyperpoint &h2) {
|
||||
return squar(h1[0]-h2[0]) + squar(h1[1]-h2[1]) + squar(h1[2]-h2[2]);
|
||||
}
|
||||
|
||||
ld zlevel(const hyperpoint &h) {
|
||||
if(euclid) return h[2];
|
||||
else if(sphere) return sqrt(intval(h, Hypc));
|
||||
@ -390,15 +394,15 @@ double hdist(const hyperpoint& h1, const hyperpoint& h2) {
|
||||
|
||||
namespace hyperpoint_vec {
|
||||
|
||||
hyperpoint operator * (double d, hyperpoint h) {
|
||||
hyperpoint operator * (ld d, hyperpoint h) {
|
||||
return hpxyz(h[0]*d, h[1]*d, h[2]*d);
|
||||
}
|
||||
|
||||
hyperpoint operator * (hyperpoint h, double d) {
|
||||
hyperpoint operator * (hyperpoint h, ld d) {
|
||||
return hpxyz(h[0]*d, h[1]*d, h[2]*d);
|
||||
}
|
||||
|
||||
hyperpoint operator / (hyperpoint h, double d) {
|
||||
hyperpoint operator / (hyperpoint h, ld d) {
|
||||
return hpxyz(h[0]/d, h[1]/d, h[2]/d);
|
||||
}
|
||||
|
||||
@ -410,6 +414,19 @@ namespace hyperpoint_vec {
|
||||
return hpxyz(h[0]-h2[0], h[1]-h2[1], h[2]-h2[2]);
|
||||
}
|
||||
|
||||
// cross product
|
||||
hyperpoint operator ^ (hyperpoint h1, hyperpoint h2) {
|
||||
return hpxyz(
|
||||
h1[1] * h2[2] - h1[2] * h2[1],
|
||||
h1[2] * h2[0] - h1[0] * h2[2],
|
||||
h1[0] * h2[1] - h1[1] * h2[0]
|
||||
);
|
||||
}
|
||||
|
||||
// inner product
|
||||
ld operator | (hyperpoint h1, hyperpoint h2) {
|
||||
return h1[0] * h2[0] + h1[1] * h2[1] + h1[2] * h2[2];
|
||||
}
|
||||
}
|
||||
|
||||
hyperpoint mscale(const hyperpoint& t, double fac) {
|
||||
|
@ -386,8 +386,9 @@ void showDisplayMode() {
|
||||
}
|
||||
#if CAP_RUG
|
||||
else if(xuni == 'u') {
|
||||
if(sphere) projectionDialog();
|
||||
else rug::select();
|
||||
//if(sphere) projectionDialog();
|
||||
//else
|
||||
rug::select();
|
||||
}
|
||||
#endif
|
||||
else if(uni == 'a')
|
||||
|
317
rug.cpp
317
rug.cpp
@ -33,9 +33,12 @@ GLAPI void APIENTRY glDeleteFramebuffers (GLsizei n, const GLuint *framebuffers)
|
||||
|
||||
namespace rug {
|
||||
|
||||
double rugzoom = .3;
|
||||
static const bool fast_euclidean = true;
|
||||
|
||||
int torus_precision = 2;
|
||||
|
||||
eGeometry gwhere = gEuclid;
|
||||
|
||||
// hypersian rug datatypes and globals
|
||||
//-------------------------------------
|
||||
|
||||
@ -48,6 +51,8 @@ bool rendernogl = false;
|
||||
int texturesize = 1024;
|
||||
ld scale = 1;
|
||||
|
||||
ld err_zero = 1e-3;
|
||||
|
||||
int queueiter, qvalid, dt;
|
||||
double err;
|
||||
|
||||
@ -76,6 +81,100 @@ struct triangle {
|
||||
vector<rugpoint*> points;
|
||||
vector<triangle> triangles;
|
||||
|
||||
bool rug_perspective = false;
|
||||
|
||||
// extra geometry functions
|
||||
//--------------------------
|
||||
|
||||
// returns a matrix M
|
||||
// such that inverse(M) * h1 = ( |h1|, 0, 0) and inverse(M) * h2 = ( .., .., 0)
|
||||
|
||||
bool zero2(hyperpoint h) { using namespace hyperpoint_vec; return !(h|h); }
|
||||
|
||||
transmatrix orthonormalize(hyperpoint h1, hyperpoint h2) {
|
||||
using namespace hyperpoint_vec;
|
||||
|
||||
hyperpoint vec[3];
|
||||
vec[2] = (h1 ^ h2);
|
||||
if(zero2(vec[2])) vec[2] = hpxyz(.519, .4619, .136);
|
||||
|
||||
vec[2] = vec[2] / sqrt(vec[2]|vec[2]);
|
||||
vec[0] = h1 - vec[2] * (h1|vec[2]);
|
||||
if(zero2(vec[0])) {
|
||||
vec[0] = hpxyz(1.641,2,3);
|
||||
vec[0] = vec[0] - vec[2] * (vec[0]|vec[2]);
|
||||
}
|
||||
vec[0] = vec[0] / sqrt(vec[0]|vec[0]);
|
||||
vec[1] = h2 - vec[2] * (h2|vec[2]) - vec[0] * (h2|vec[0]);
|
||||
if(zero2(vec[1])) {
|
||||
vec[1] = hpxyz(1.713,3,5);
|
||||
vec[1] = vec[1] - vec[2] * (vec[1]|vec[2]) - vec[0] * (vec[1]|vec[0]);
|
||||
}
|
||||
vec[1] = vec[1] / sqrt(vec[1]|vec[1]);
|
||||
|
||||
transmatrix M;
|
||||
for(int i=0; i<3; i++) for(int j=0; j<3; j++)
|
||||
M[i][j] = vec[j][i];
|
||||
|
||||
return M;
|
||||
}
|
||||
|
||||
hyperpoint azeq_to_hyperboloid(hyperpoint h) {
|
||||
if(abs(h[2])>1e-4) printf("Error: h[2] = %lf\n", h[2]);
|
||||
if(euclid) {
|
||||
h[2] = 1;
|
||||
return h;
|
||||
}
|
||||
ld d = hypot(h[0], h[1]);
|
||||
if(d == 0) {
|
||||
h[2] = 1;
|
||||
return h;
|
||||
}
|
||||
if(sphere) {
|
||||
h[0] = sin(d) * h[0]/d;
|
||||
h[1] = sin(d) * h[1]/d;
|
||||
h[2] = cos(d);
|
||||
}
|
||||
else {
|
||||
h[0] = sinh(d) * h[0]/d;
|
||||
h[1] = sinh(d) * h[1]/d;
|
||||
h[2] = cosh(d);
|
||||
}
|
||||
return h;
|
||||
}
|
||||
|
||||
hyperpoint hyperboloid_to_azeq(hyperpoint h) {
|
||||
if(euclid) {
|
||||
h[2] = 0;
|
||||
return h;
|
||||
}
|
||||
else {
|
||||
ld d = hdist0(h);
|
||||
if(d == 0) { h[2] = 0; return h; }
|
||||
ld d2 = hypot(h[0], h[1]);
|
||||
if(d2 == 0) { h[2] = 0; return h; }
|
||||
h[0] = d * h[0] / d2;
|
||||
h[1] = d * h[1] / d2;
|
||||
h[2] = 0;
|
||||
return h;
|
||||
}
|
||||
}
|
||||
|
||||
void push_all_points(int coord, ld val) {
|
||||
if(!val) return;
|
||||
else if(fast_euclidean && gwhere == gEuclid) {
|
||||
for(int i=0; i<size(points); i++)
|
||||
points[i]->flat[coord] += val;
|
||||
}
|
||||
else for(int i=0; i<size(points); i++) {
|
||||
dynamicval<eGeometry> gw(geometry, gwhere);
|
||||
transmatrix M = orthonormalize(hpxyz(coord==0,coord==1,coord==2), points[i]->flat);
|
||||
transmatrix Mi = inverse(M);
|
||||
hyperpoint f = azeq_to_hyperboloid(Mi * points[i]->flat);
|
||||
points[i]->flat = M * hyperboloid_to_azeq(xpush(val) * f);
|
||||
}
|
||||
}
|
||||
|
||||
// construct the graph
|
||||
//---------------------
|
||||
|
||||
@ -85,11 +184,21 @@ rugpoint *addRugpoint(hyperpoint h, double dist) {
|
||||
rugpoint *m = new rugpoint;
|
||||
m->h = h;
|
||||
|
||||
/*
|
||||
ld tz = vid.alphax+h[2];
|
||||
m->x1 = (1 + h[0] / tz) / 2;
|
||||
m->y1 = (1 + h[1] / tz) / 2;
|
||||
*/
|
||||
|
||||
hyperpoint onscreen;
|
||||
applymodel(m->h, onscreen);
|
||||
m->x1 = (1 + onscreen[0] * vid.scale) / 2;
|
||||
m->y1 = (1 + onscreen[1] * vid.scale) / 2;
|
||||
|
||||
m->flat = // hpxyz(h[0], h[1], sin(atan2(h[0], h[1]) * 3 + hyprand) * (h[2]-1) / 1000);
|
||||
hpxyz(h[0], h[1], (h[2]-1) * (rand() % 1000 - rand() % 1000) / 1000);
|
||||
|
||||
if(rug_perspective && gwhere == gEuclid) m->flat[2] -= 3;
|
||||
m->valid = false;
|
||||
m->inqueue = false;
|
||||
m->dist = dist;
|
||||
@ -130,26 +239,29 @@ void addTriangle1(rugpoint *t1, rugpoint *t2, rugpoint *t3) {
|
||||
}
|
||||
|
||||
bool psort(rugpoint *a, rugpoint *b) {
|
||||
return a->h[2] < b->h[2];
|
||||
return hdist0(a->h) < hdist0(b->h);
|
||||
}
|
||||
|
||||
ld modelscale = 1;
|
||||
|
||||
void calcLengths() {
|
||||
for(int i=0; i<size(points); i++) for(int j=0; j<size(points[i]->edges); j++)
|
||||
points[i]->edges[j].len = hdist(points[i]->h, points[i]->edges[j].target->h);
|
||||
for(int i=0; i<size(points); i++) for(int j=0; j<size(points[i]->edges); j++) {
|
||||
ld d = hdist(points[i]->h, points[i]->edges[j].target->h);
|
||||
if(elliptic && d > M_PI/2) d = M_PI - d;
|
||||
points[i]->edges[j].len = d * modelscale;
|
||||
}
|
||||
}
|
||||
|
||||
void setVidParam() {
|
||||
vid.xres = vid.yres = TEXTURESIZE; vid.scale = 1;
|
||||
vid.radius = HTEXTURESIZE; vid.xcenter = HTEXTURESIZE; vid.ycenter = HTEXTURESIZE;
|
||||
vid.xres = vid.yres = TEXTURESIZE;
|
||||
vid.scrsize = HTEXTURESIZE;
|
||||
vid.radius = vid.scrsize * vid.scale; vid.xcenter = HTEXTURESIZE; vid.ycenter = HTEXTURESIZE;
|
||||
vid.beta = 2; vid.alphax = 1; vid.eye = 0; vid.goteyes = false;
|
||||
if(torus) vid.radius *= rugzoom;
|
||||
}
|
||||
|
||||
void buildTorusRug() {
|
||||
using namespace torusconfig;
|
||||
|
||||
dynamicval<videopar> d(vid, vid);
|
||||
rugzoom = 1;
|
||||
setVidParam();
|
||||
|
||||
struct toruspoint {
|
||||
@ -157,7 +269,7 @@ void buildTorusRug() {
|
||||
toruspoint() { x=qty; y=qty; }
|
||||
toruspoint(int _x, int _y) : x(_x), y(_y) {}
|
||||
int d2() {
|
||||
return x*x+x*y+y*y;
|
||||
return x*x+(euclid6?x*y:0)+y*y;
|
||||
}
|
||||
};
|
||||
|
||||
@ -250,12 +362,11 @@ void buildTorusRug() {
|
||||
|
||||
// maxz * rugzoom * vid.radius == vid.radius
|
||||
|
||||
rugzoom = 1 / maxz;
|
||||
printf("rugzoom = %lf\n", rugzoom);
|
||||
vid.scale = 1 / maxz;
|
||||
|
||||
for(auto p: points)
|
||||
p->x1 = (vid.xcenter + vid.radius * rugzoom * p->x1)/ vid.xres,
|
||||
p->y1 = (vid.ycenter - vid.radius * rugzoom * p->y1)/ vid.yres;
|
||||
p->x1 = (vid.xcenter + vid.radius * vid.scale * p->x1)/ vid.xres,
|
||||
p->y1 = (vid.ycenter - vid.radius * vid.scale * p->y1)/ vid.yres;
|
||||
|
||||
return;
|
||||
}
|
||||
@ -267,7 +378,6 @@ void buildRug() {
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
map<cell*, rugpoint *> vptr;
|
||||
|
||||
for(int i=0; i<size(dcal); i++)
|
||||
@ -306,7 +416,7 @@ void enqueue(rugpoint *m) {
|
||||
m->inqueue = true;
|
||||
}
|
||||
|
||||
void force(rugpoint& m1, rugpoint& m2, double rd, double d1=1, double d2=1) {
|
||||
void force_euclidean(rugpoint& m1, rugpoint& m2, double rd, double d1=1, double d2=1) {
|
||||
if(!m1.valid || !m2.valid) return;
|
||||
// double rd = hdist(m1.h, m2.h) * xd;
|
||||
// if(rd > rdz +1e-6 || rd< rdz-1e-6) printf("%lf %lf\n", rd, rdz);
|
||||
@ -315,7 +425,7 @@ void force(rugpoint& m1, rugpoint& m2, double rd, double d1=1, double d2=1) {
|
||||
t = sqrt(t);
|
||||
// printf("%lf %lf\n", t, rd);
|
||||
err += (t-rd) * (t-rd);
|
||||
bool nonzero = t < rd-1e-9 || t > rd+1e-9;
|
||||
bool nonzero = abs(t-rd) > err_zero;
|
||||
double force = (t - rd) / t / 2; // 20.0;
|
||||
for(int i=0; i<3; i++) {
|
||||
double di = (m2.flat[i] - m1.flat[i]) * force;
|
||||
@ -325,6 +435,60 @@ void force(rugpoint& m1, rugpoint& m2, double rd, double d1=1, double d2=1) {
|
||||
}
|
||||
}
|
||||
|
||||
void force(rugpoint& m1, rugpoint& m2, double rd, double d1=1, double d2=1) {
|
||||
if(!m1.valid || !m2.valid) return;
|
||||
if(gwhere == gEuclid && fast_euclidean) {
|
||||
force_euclidean(m1, m2, rd, d1, d2);
|
||||
return;
|
||||
}
|
||||
// double rd = hdist(m1.h, m2.h) * xd;
|
||||
// if(rd > rdz +1e-6 || rd< rdz-1e-6) printf("%lf %lf\n", rd, rdz);
|
||||
using namespace hyperpoint_vec;
|
||||
dynamicval<eGeometry> gw(geometry, gwhere);
|
||||
transmatrix M = orthonormalize(m1.flat, m2.flat);
|
||||
transmatrix Mi = inverse(M);
|
||||
hyperpoint f1 = azeq_to_hyperboloid(Mi * m1.flat);
|
||||
hyperpoint f2 = azeq_to_hyperboloid(Mi * m2.flat);
|
||||
|
||||
ld t = hdist(f1, f2);
|
||||
err += (t-rd) * (t-rd);
|
||||
bool nonzero = abs(t-rd) > err_zero;
|
||||
double forcev = (t - rd) / 2; // 20.0;
|
||||
|
||||
transmatrix T = gpushxto0(f1);
|
||||
transmatrix T1 = spintox(T * f2) * T;
|
||||
|
||||
transmatrix iT1 = inverse(T1);
|
||||
|
||||
for(int i=0; i<3; i++) if(isnan(m1.flat[i])) { printf("NAN!\n"); exit(1); }
|
||||
|
||||
/*
|
||||
printf("%p %p\n", &m1, &m2);
|
||||
|
||||
printf("m1 = %s\n", display(m1.flat));
|
||||
printf("m2 = %s\n", display(m2.flat));
|
||||
printf("Mi * m1 = %s\n", display(Mi*m1.flat));
|
||||
printf("Mi * m2 = %s\n", display(Mi*m2.flat));
|
||||
|
||||
printf(" f1 = %s\n", display(f1));
|
||||
printf(" T * f1 = %s\n", display(T * f1));
|
||||
printf("T1 * f1 = %s\n", display(T1 * f1));
|
||||
printf(" f2 = %s\n", display(f2));
|
||||
printf(" T * f2 = %s\n", display(T * f2));
|
||||
printf("T1 * f2 = %s\n", display(T1 * f2));
|
||||
printf("iT1 = %s\n", display(iT1 * C0));
|
||||
printf("iT1 + t = %s\n", display(iT1 * xpush(t) * C0));
|
||||
*/
|
||||
|
||||
f1 = iT1 * xpush(forcev) * C0;
|
||||
f2 = iT1 * xpush(t-forcev) * C0;
|
||||
|
||||
m1.flat = M * hyperboloid_to_azeq(f1);
|
||||
m2.flat = M * hyperboloid_to_azeq(f2);
|
||||
|
||||
if(nonzero && d2>0) enqueue(&m2);
|
||||
}
|
||||
|
||||
void preset(rugpoint *m) {
|
||||
int q = 0;
|
||||
hyperpoint h;
|
||||
@ -378,7 +542,8 @@ bool stop = false;
|
||||
|
||||
void subdivide() {
|
||||
int N = size(points);
|
||||
if(divides > 4) {stop = true; return; }
|
||||
// if(euclid && gwhere == gEuclid) return;
|
||||
if(N >= 8000) {stop = true; return; }
|
||||
printf("subdivide (%d,%d)\n", N, size(triangles));
|
||||
divides++;
|
||||
vector<triangle> otriangles = triangles;
|
||||
@ -413,14 +578,14 @@ void addNewPoints() {
|
||||
return;
|
||||
}
|
||||
|
||||
double dist = points[qvalid]->h[2] + .1e-6;
|
||||
double dist = hdist0(points[qvalid]->h) + .1e-6;
|
||||
|
||||
int oqvalid = qvalid;
|
||||
|
||||
for(int i=0; i<size(points); i++) {
|
||||
rugpoint& m = *points[i];
|
||||
bool wasvalid = m.valid;
|
||||
m.valid = wasvalid || (m.h[2] >= .5 && m.h[2] < dist);
|
||||
m.valid = wasvalid || sphere || hdist0(m.h) <= dist;
|
||||
if(m.valid && !wasvalid) {
|
||||
qvalid++;
|
||||
if(i > 7) preset(&m);
|
||||
@ -438,7 +603,13 @@ void addNewPoints() {
|
||||
void physics() {
|
||||
|
||||
if(torus) return;
|
||||
for(int it=0; it<10000 && !stop; it++)
|
||||
|
||||
int t = SDL_GetTicks();
|
||||
|
||||
err = 0;
|
||||
|
||||
while(SDL_GetTicks() < t + 5 && !stop)
|
||||
for(int it=0; it<50; it++)
|
||||
if(pqueue.empty()) addNewPoints();
|
||||
else {
|
||||
queueiter++;
|
||||
@ -448,6 +619,8 @@ void physics() {
|
||||
for(int j=0; j<size(m->edges); j++)
|
||||
force(*m, *m->edges[j].target, m->edges[j].len);
|
||||
}
|
||||
|
||||
if(!stop) printf("%5d %10.7lf D%d Q%3d Qv%5d\n", queueiter, err, divides, size(pqueue), qvalid);
|
||||
}
|
||||
|
||||
// drawing the Rug
|
||||
@ -455,10 +628,20 @@ void physics() {
|
||||
|
||||
int eyemod;
|
||||
|
||||
void getco(rugpoint& m, double& x, double& y, double& z) {
|
||||
void getco(rugpoint& m, double& x, double& y, double& z, int &spherepoints) {
|
||||
x = m.flat[0];
|
||||
y = m.flat[1];
|
||||
z = m.flat[2];
|
||||
if(gwhere == gSphere && z > 0) {
|
||||
ld rad = sqrt(x*x + y*y + z*z);
|
||||
// turn M_PI to -M_PI
|
||||
ld rad_to = M_PI + M_PI - rad;
|
||||
ld r = -rad_to / rad;
|
||||
x *= r;
|
||||
y *= r;
|
||||
z *= r;
|
||||
spherepoints++;
|
||||
}
|
||||
if(eyemod) x += eyemod * z * vid.eye;
|
||||
}
|
||||
|
||||
@ -472,12 +655,14 @@ void drawTriangle(triangle& t) {
|
||||
if(m1.dist >= sightrange+.51 || m2.dist >= sightrange+.51 || m3.dist >= sightrange+.51)
|
||||
return;
|
||||
dt++;
|
||||
int spherepoints = 0;
|
||||
double x1, y1, z1;
|
||||
double x2, y2, z2;
|
||||
double x3, y3, z3;
|
||||
getco(m1,x1,y1,z1);
|
||||
getco(m2,x2,y2,z2);
|
||||
getco(m3,x3,y3,z3);
|
||||
getco(m1,x1,y1,z1, spherepoints);
|
||||
getco(m2,x2,y2,z2, spherepoints);
|
||||
getco(m3,x3,y3,z3, spherepoints);
|
||||
if(spherepoints == 1 || spherepoints == 2) return;
|
||||
|
||||
double xa = x2-x1, ya = y2-y1, za = z2-z1;
|
||||
double xb = x3-x1, yb = y3-y1, zb = z3-z1;
|
||||
@ -643,10 +828,18 @@ void drawRugScene() {
|
||||
glEnable(GL_DEPTH_TEST);
|
||||
glDepthFunc(GL_LESS);
|
||||
|
||||
xview = vid.xres/(vid.radius*scale);
|
||||
yview = vid.yres/(vid.radius*scale);
|
||||
if(rug_perspective) {
|
||||
ld vnear = .05;
|
||||
ld vfar = 10;
|
||||
ld sca = vnear / 2 / vid.xres;
|
||||
glFrustum(-sca * vid.xres, sca * vid.xres, -sca * vid.yres, sca * vid.yres, vnear, vfar);
|
||||
}
|
||||
else {
|
||||
xview = vid.xres/(vid.scrsize*scale);
|
||||
yview = vid.yres/(vid.scrsize*scale);
|
||||
|
||||
glOrtho(-xview, xview, -yview, yview, -1000, 1000);
|
||||
}
|
||||
|
||||
glColor4f(1,1,1,1);
|
||||
|
||||
@ -744,10 +937,44 @@ void actDraw() {
|
||||
drawRugScene();
|
||||
Uint8 *keystate = SDL_GetKeyState(NULL);
|
||||
int qm = 0;
|
||||
transmatrix t = Id;
|
||||
double alpha = (ticks - lastticks) / 1000.0;
|
||||
lastticks = ticks;
|
||||
|
||||
transmatrix t = Id;
|
||||
|
||||
if(rug_perspective) {
|
||||
int qms = 0;
|
||||
if(keystate[SDLK_HOME]) qm++, t = t * rotmatrix(alpha, 0, 1);
|
||||
if(keystate[SDLK_END]) qm++, t = t * rotmatrix(alpha, 1, 0);
|
||||
|
||||
if(!keystate[SDLK_LSHIFT]) {
|
||||
if(keystate[SDLK_DOWN]) qm++, t = t * rotmatrix(alpha, 2, 1);
|
||||
if(keystate[SDLK_UP]) qm++, t = t * rotmatrix(alpha, 1, 2);
|
||||
if(keystate[SDLK_LEFT]) qm++, t = t * rotmatrix(alpha, 2, 0);
|
||||
if(keystate[SDLK_RIGHT]) qm++, t = t * rotmatrix(alpha, 0, 2);
|
||||
}
|
||||
ld push = 0;
|
||||
if(keystate[SDLK_PAGEDOWN]) push -= alpha;
|
||||
if(keystate[SDLK_PAGEUP]) push += alpha;
|
||||
|
||||
ld strafex = 0, strafey = 0;
|
||||
if(keystate[SDLK_LSHIFT]) {
|
||||
if(keystate[SDLK_LEFT]) strafex -= alpha;
|
||||
if(keystate[SDLK_RIGHT]) strafex += alpha;
|
||||
if(keystate[SDLK_UP]) strafey -= alpha;
|
||||
if(keystate[SDLK_DOWN]) strafey += alpha;
|
||||
}
|
||||
|
||||
if(qm)
|
||||
for(int i=0; i<size(points); i++) {
|
||||
points[i]->flat = t * points[i]->flat;
|
||||
}
|
||||
|
||||
push_all_points(2, push);
|
||||
push_all_points(0, strafex);
|
||||
push_all_points(1, strafey);
|
||||
}
|
||||
else {
|
||||
if(keystate[SDLK_HOME]) qm++, t = inverse(currentrot);
|
||||
if(keystate[SDLK_END]) qm++, t = currentrot * rotmatrix(alpha, 0, 1) * inverse(currentrot);
|
||||
if(keystate[SDLK_DOWN]) qm++, t = t * rotmatrix(alpha, 1, 2);
|
||||
@ -762,6 +989,7 @@ void actDraw() {
|
||||
for(int i=0; i<size(points); i++) points[i]->flat = t * points[i]->flat;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int besti;
|
||||
|
||||
@ -854,7 +1082,7 @@ void show() {
|
||||
else if(uni == 'u') {
|
||||
if((euclid || sphere) && !torus)
|
||||
addMessage("This makes sense only in hyperbolic or Torus geometry.");
|
||||
else {
|
||||
{
|
||||
rug::init();
|
||||
popScreen();
|
||||
}
|
||||
@ -881,6 +1109,37 @@ void select() {
|
||||
else pushScreen(rug::show);
|
||||
}
|
||||
|
||||
int rugArgs() {
|
||||
using namespace arg;
|
||||
|
||||
if(0) ;
|
||||
else if(argis("-rugmodelscale")) {
|
||||
shift(); modelscale = argf();
|
||||
}
|
||||
|
||||
else if(argis("-ruggeo")) {
|
||||
shift(); gwhere = (eGeometry) argi();
|
||||
}
|
||||
|
||||
else if(argis("-rugpers")) {
|
||||
rug_perspective = true;
|
||||
}
|
||||
|
||||
else if(argis("-rugorth")) {
|
||||
rug_perspective = false;
|
||||
}
|
||||
|
||||
else if(argis("-rugerr")) {
|
||||
err_zero = argf();
|
||||
}
|
||||
|
||||
else return 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
auto rug_hook =
|
||||
addHook(hooks_args, 100, rugArgs);
|
||||
|
||||
}
|
||||
|
||||
#else
|
||||
|
Loading…
Reference in New Issue
Block a user