mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2024-11-24 21:37:18 +00:00
666 lines
20 KiB
C++
666 lines
20 KiB
C++
|
namespace hr {
|
||
|
|
||
|
namespace synt {
|
||
|
|
||
|
int indent;
|
||
|
|
||
|
struct indenter {
|
||
|
indenter() { indent += 2; }
|
||
|
~indenter() { indent -= 2; }
|
||
|
};
|
||
|
|
||
|
void doindent() { fflush(stdout); for(int i=0; i<indent; i++) printf(" "); }
|
||
|
|
||
|
bool do_sdebug = false;
|
||
|
|
||
|
#define SDEBUG(x) if(do_sdebug) { doindent(); x; fflush(stdout); }
|
||
|
|
||
|
// Marek-snub
|
||
|
vector<int> faces = {3, 6, 6, 6};
|
||
|
vector<int> adj = {1, 0, 2, 3};
|
||
|
vector<bool> invert = {false, false, true, false};
|
||
|
|
||
|
/*
|
||
|
vector<int> faces = {3, 6, 6, 6};
|
||
|
vector<int> adj = {1, 0, 2, 3};
|
||
|
vector<bool> invert = {false, false, false, false};
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
vector<int> faces = {7, 6, 6};
|
||
|
vector<int> adj = {1, 0, 2};
|
||
|
vector<bool> invert = {false, false, false};
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
vector<int> faces = {8, 8, 8};
|
||
|
vector<int> adj = {0, 1, 2};
|
||
|
vector<bool> invert = {false, false, false};
|
||
|
*/
|
||
|
|
||
|
int repetition = 1;
|
||
|
int N;
|
||
|
|
||
|
vector<vector<pair<int, int>>> adjacent;
|
||
|
|
||
|
vector<vector<pair<ld, ld>>> triangles;
|
||
|
|
||
|
// id of vertex in the syntetic tiling
|
||
|
// odd numbers = reflected tiles
|
||
|
// 0, 2, ..., 2(N-1) = as in the symbol
|
||
|
// 2N = bitruncated tile
|
||
|
|
||
|
short& id_of(heptagon *h) {
|
||
|
return h->zebraval;
|
||
|
}
|
||
|
|
||
|
// which index in id_of's neighbor list does h->move[0] have
|
||
|
|
||
|
short& parent_index_of(heptagon *h) {
|
||
|
return h->emeraldval;
|
||
|
}
|
||
|
|
||
|
// total number of neighbors
|
||
|
|
||
|
int neighbors_of(heptagon *h) {
|
||
|
return isize(triangles[id_of(h)]);
|
||
|
}
|
||
|
|
||
|
// right_sibling_of(h) has the same distance ('right sibling'), then we have some at smaller or equal distance,
|
||
|
// parents_of(h) has the same distance again ('left sibling'), and then we have vertices at bigger distance,
|
||
|
// who are our 'children' except the rightmost one which is typically a child of the right sibling
|
||
|
|
||
|
short& right_sibling_of(heptagon *h) {
|
||
|
return h->fiftyval;
|
||
|
}
|
||
|
|
||
|
int parents_of(heptagon *h) {
|
||
|
return h->s;
|
||
|
}
|
||
|
|
||
|
int children_of(heptagon *h) {
|
||
|
return right_sibling_of(h) - 1 - parents_of(h);
|
||
|
}
|
||
|
|
||
|
ld edgelength;
|
||
|
vector<ld> inradius, circumradius, alphas;
|
||
|
|
||
|
void prepare() {
|
||
|
|
||
|
/* build the 'adjacent' table */
|
||
|
|
||
|
N = isize(faces);
|
||
|
adjacent.clear();
|
||
|
adjacent.resize(2*N+2);
|
||
|
for(int i=0; i<N; i++) {
|
||
|
for(int oi=0; oi<1; oi++) {
|
||
|
int at = (i+oi)%N;
|
||
|
int inv = oi;
|
||
|
printf("vertex ");
|
||
|
for(int z=0; z<faces[i]; z++) {
|
||
|
printf("[%d %d] " , at, inv);
|
||
|
adjacent[2*i+oi].emplace_back(2*N+int(inv), inv ? (2*at+2*N-2) % (2*N) : 2*at);
|
||
|
if(invert[at]) inv ^= 1;
|
||
|
at = adj[at];
|
||
|
if(inv) at = (at+1) % N;
|
||
|
else at = (at+N-1) % N;
|
||
|
}
|
||
|
printf("-> [%d %d]\n", at, inv);
|
||
|
if(faces[at] != faces[i]) printf("error!\n");
|
||
|
}
|
||
|
}
|
||
|
for(int i=0; i<N; i++) {
|
||
|
adjacent[2*N].emplace_back(2*i, 0);
|
||
|
int ai = (i+1) % N;
|
||
|
adjacent[2*N].emplace_back(2*N+int(invert[ai]), (2*adj[ai]+2*N-1) % (2*N));
|
||
|
}
|
||
|
|
||
|
for(int i=0; i<2*N+2; i++) {
|
||
|
printf("prelim adjacent %2d:", i);
|
||
|
for(int j=0; j<isize(adjacent[i]); j++) {
|
||
|
auto p = adjacent[i][j];
|
||
|
printf(" (%d,%d)", p.first, p.second);
|
||
|
}
|
||
|
printf("\n");
|
||
|
}
|
||
|
|
||
|
for(int d=0; d<=2*N; d+=2) {
|
||
|
int s = isize(adjacent[d]);
|
||
|
for(int i=0; i<s; i++) {
|
||
|
auto& orig = adjacent[d][s-1-i];
|
||
|
adjacent[d+1].emplace_back(orig.first ^ 1, orig.second);
|
||
|
}
|
||
|
}
|
||
|
for(int d=0; d<2*N+2; d++) {
|
||
|
int s = isize(adjacent[d]);
|
||
|
for(int i=0; i<s; i++) {
|
||
|
auto& orig = adjacent[d][i];
|
||
|
if(orig.first & 1) orig.second = isize(adjacent[orig.first]) - 1 - orig.second;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for(int i=0; i<2*N+2; i++) {
|
||
|
printf("adjacent %2d:", i);
|
||
|
for(int j=0; j<isize(adjacent[i]); j++) {
|
||
|
auto p = adjacent[i][j];
|
||
|
printf(" (%d,%d)", p.first, p.second);
|
||
|
auto q = adjacent[p.first][p.second];
|
||
|
printf(" <%d,%d>", q.first, q.second);
|
||
|
if(isize(adjacent[q.first]) != isize(adjacent[i])) printf(" {error}");
|
||
|
}
|
||
|
printf("\n");
|
||
|
}
|
||
|
|
||
|
/* verify all the triangles */
|
||
|
for(int i=0; i<2*N+2; i++) {
|
||
|
for(int j=0; j<isize(adjacent[i]); j++) {
|
||
|
int ai = i, aj = j;
|
||
|
printf("triangle ");
|
||
|
for(int s=0; s<3; s++) {
|
||
|
printf("[%d %d] ", ai, aj); fflush(stdout);
|
||
|
tie(ai, aj) = adjacent[ai][aj];
|
||
|
aj++; if(aj >= isize(adjacent[ai])) aj = 0;
|
||
|
}
|
||
|
printf("-> [%d %d]\n", ai, aj);
|
||
|
if(isize(adjacent[ai]) != isize(adjacent[i])) printf("error!\n");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
ld sum = 0;
|
||
|
for(int f: faces) sum += (f-2.) / f;
|
||
|
if(sum < 1.999999) ginf[gSyntetic].cclass = gcSphere;
|
||
|
else if(sum > 2.000001) ginf[gSyntetic].cclass = gcHyperbolic;
|
||
|
else ginf[gSyntetic].cclass = gcEuclid;
|
||
|
|
||
|
printf("sum = %lf\n", double(sum));
|
||
|
|
||
|
dynamicval<eGeometry> dv(geometry, gSyntetic);
|
||
|
|
||
|
/* compute the geometry */
|
||
|
inradius.resize(N);
|
||
|
circumradius.resize(N);
|
||
|
alphas.resize(N);
|
||
|
ld elmin = 0, elmax = hyperbolic ? 10 : sphere ? M_PI : 1;
|
||
|
for(int p=0; p<100; p++) {
|
||
|
edgelength = (elmin + elmax) / 2;
|
||
|
|
||
|
ld alpha_total = 0;
|
||
|
|
||
|
for(int i=0; i<N; i++) {
|
||
|
ld crmin = 0, crmax = sphere ? M_PI : 10;
|
||
|
for(int q=0; q<100; q++) {
|
||
|
circumradius[i] = (crmin + crmax) / 2;
|
||
|
hyperpoint p1 = xpush(circumradius[i]) * C0;
|
||
|
hyperpoint p2 = spin(2 * M_PI / faces[i]) * p1;
|
||
|
inradius[i] = hdist0(mid(p1, p2));
|
||
|
if(hdist(p1, p2) > edgelength) crmax = circumradius[i];
|
||
|
else crmin = circumradius[i];
|
||
|
}
|
||
|
hyperpoint h = xpush(edgelength/2) * spin(M_PI/2) * xpush(inradius[i]) * C0;
|
||
|
alphas[i] = atan2(-h[1], h[0]);
|
||
|
alpha_total += alphas[i];
|
||
|
}
|
||
|
|
||
|
// printf("el = %lf alpha = %lf\n", double(edgelength), double(alpha_total));
|
||
|
|
||
|
if(sphere ^ (alpha_total > M_PI)) elmin = edgelength;
|
||
|
else elmax = edgelength;
|
||
|
if(euclid) break;
|
||
|
}
|
||
|
|
||
|
printf("computed edgelength = %lf\n", double(edgelength));
|
||
|
|
||
|
triangles.clear();
|
||
|
triangles.resize(2*N+2);
|
||
|
for(int i=0; i<N; i++) for(int j=0; j<2; j++)
|
||
|
for(int k=0; k<faces[i]; k++)
|
||
|
triangles[2*i+j].emplace_back(2*M_PI/faces[i], circumradius[i]);
|
||
|
|
||
|
for(int k=0; k<N; k++) {
|
||
|
triangles[2*N].emplace_back(alphas[k], circumradius[k]);
|
||
|
triangles[2*N].emplace_back(alphas[(k+1)%N], edgelength);
|
||
|
triangles[2*N+1].emplace_back(alphas[N-1-k], edgelength);
|
||
|
triangles[2*N+1].emplace_back(alphas[N-1-k], circumradius[N-1-k]);
|
||
|
}
|
||
|
|
||
|
for(auto& ts: triangles) {
|
||
|
ld total = 0;
|
||
|
for(auto& t: ts) tie(t.first, total) = make_pair(total, total + t.first);
|
||
|
// printf("total = %lf\n", double(total));
|
||
|
}
|
||
|
|
||
|
for(auto& ts: triangles) {
|
||
|
printf("T");
|
||
|
for(auto& t: ts) printf(" %lf@%lf", double(t.first), double(t.second));
|
||
|
printf("\n");
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
void initialize(heptagon *h) {
|
||
|
|
||
|
prepare();
|
||
|
|
||
|
/* initialize the root */
|
||
|
|
||
|
parent_index_of(h) = 0;
|
||
|
id_of(h) = 0;
|
||
|
h->c7 = newCell(isize(adjacent[0]), h);
|
||
|
|
||
|
if(sphere) celllister cl(h->c7, 1000, 1000000, NULL);
|
||
|
|
||
|
/* test */
|
||
|
SDEBUG(
|
||
|
printf("started testing\n");
|
||
|
heptagon *htest = h;
|
||
|
for(int i=0; i<10000; i++)
|
||
|
htest = createStep(htest, hrand(neighbors_of(htest)));
|
||
|
)
|
||
|
};
|
||
|
|
||
|
void verify_distance_delta(heptagon *h, int d, int delta) {
|
||
|
if(!h->move[d]) return;
|
||
|
if(h->move[d]->distance != h->distance + delta) {
|
||
|
SDEBUG( printf("ERROR: delta %p.%d (%d/%d)\n", h, d, h->move[d]->distance, h->distance + delta); )
|
||
|
// exit(1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void debug(heptagon *h) {
|
||
|
auto& p = adjacent[id_of(h)];
|
||
|
if(h->s == hsOrigin) {
|
||
|
for(int i=0; i<isize(p); i++) verify_distance_delta(h, i, 1);
|
||
|
}
|
||
|
else {
|
||
|
int first = h->s + 1;
|
||
|
verify_distance_delta(h, 0, -1);
|
||
|
verify_distance_delta(h, first-2, -1);
|
||
|
verify_distance_delta(h, first-1, 0);
|
||
|
verify_distance_delta(h, isize(p)-1, 0);
|
||
|
for(int d=first; d<isize(p)-1; d++) verify_distance_delta(h, d, 1);
|
||
|
for(int d=0; d<isize(p); d++) if(h->move[d]) {
|
||
|
auto& p = adjacent[id_of(h)];
|
||
|
auto uv = p[(parent_index_of(h) + d) % isize(p)];
|
||
|
if(neighbors_of(h->move[d]) != isize(adjacent[uv.first])) {
|
||
|
SDEBUG( printf("neighbors mismatch at %p/%d->%p: is %d expected %d\n", h, d, h->move[d], neighbors_of(h->move[d]), isize(adjacent[uv.first])); )
|
||
|
exit(1);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
heptagon *build_child(heptagon *parent, int d, int id, int pindex) {
|
||
|
indenter ind;
|
||
|
auto h = buildHeptagon(parent, d, hstate(1), 0);
|
||
|
id_of(h) = id;
|
||
|
parent_index_of(h) = pindex;
|
||
|
int nei = neighbors_of(h);
|
||
|
right_sibling_of(h) = nei - 1;
|
||
|
h->distance = parent->distance + 1;
|
||
|
h->c7 = newCell(nei, h);
|
||
|
SDEBUG( printf("%p.%d/%d ~ %p.0/%d (state=1/NEW,id=%d,pindex=%d,distance=%d)\n", parent, d, neighbors_of(parent), h, neighbors_of(h), id, pindex, h->distance); )
|
||
|
debug(h); debug(parent);
|
||
|
return h;
|
||
|
}
|
||
|
|
||
|
void connectHeptagons(heptagon *h, int i, heptspin hs) {
|
||
|
indenter ind;
|
||
|
SDEBUG( printf("%p.%d/%d ~ %p.%d/%d (state=%d,id=%d,pindex=%d,distance=%d)\n", h, i, neighbors_of(h), hs.h, hs.spin, neighbors_of(hs.h),
|
||
|
hs.h->s, id_of(hs.h), parent_index_of(hs.h), hs.h->distance); )
|
||
|
if(h->move[i] == hs.h && h->spin(i) == hs.spin) {
|
||
|
SDEBUG( printf("WARNING: already connected\n"); )
|
||
|
return;
|
||
|
}
|
||
|
if(h->move[i]) {
|
||
|
SDEBUG( printf("ERROR: already connected left to: %p not %p\n", h->move[i], hs.h); )
|
||
|
exit(1);
|
||
|
}
|
||
|
if(hs.h->move[hs.spin]) {
|
||
|
SDEBUG( printf("ERROR: already connected right to: %p not %p\n", hs.h->move[hs.spin], h); )
|
||
|
exit(1);
|
||
|
// exit(1);
|
||
|
}
|
||
|
hr::connectHeptagons(h, i, hs.h, hs.spin);
|
||
|
debug(h);
|
||
|
debug(hs.h);
|
||
|
}
|
||
|
|
||
|
int prune(heptagon*& h) {
|
||
|
int result = 1;
|
||
|
int n = neighbors_of(h);
|
||
|
auto h0 = h;
|
||
|
SDEBUG( printf("pruning: %p\n", h0); )
|
||
|
for(int i=0; i<n; i++)
|
||
|
if(h0->move[i]) {
|
||
|
if(h0->spin(i) == 0)
|
||
|
result += prune(h0->move[i]);
|
||
|
else {
|
||
|
h0->move[i]->move[h0->spin(i)] = NULL;
|
||
|
h0->move[i] = NULL;
|
||
|
}
|
||
|
}
|
||
|
delete h0->c7;
|
||
|
delete h0;
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
void contract(heptagon *h) {
|
||
|
switch(children_of(h)) {
|
||
|
case 0: {
|
||
|
SDEBUG( printf("handling contraction (0) at %p\n", h); )
|
||
|
heptspin right = heptspin(h, right_sibling_of(h)) + wstep + 1;
|
||
|
heptspin left = heptspin(h, parents_of(h)) + wstep - 1;
|
||
|
connectHeptagons(right.h, right.spin, left);
|
||
|
right.h->s++;
|
||
|
right_sibling_of(left.h)--;
|
||
|
contract(right.h);
|
||
|
contract(left.h);
|
||
|
break;
|
||
|
}
|
||
|
case -1: {
|
||
|
SDEBUG( printf("handling contraction (-1) at %p\n", h); )
|
||
|
indenter ind2;
|
||
|
heptspin hs0(h, neighbors_of(h)-1);
|
||
|
heptspin hs = hs0;
|
||
|
hs = hs + 1 + wstep + 1;
|
||
|
while(hs.spin == neighbors_of(hs.h) - 1) {
|
||
|
SDEBUG( printf("hsr at %p.%d/%d (%d parents)\n", hs.h, hs.spin, neighbors_of(hs.h), parents_of(hs.h)); )
|
||
|
hs = hs + wstep + 1;
|
||
|
}
|
||
|
SDEBUG( printf("hsr at %p.%d/%d (%d parents)\n", hs.h, hs.spin, neighbors_of(hs.h), parents_of(hs.h)); )
|
||
|
heptspin correct = hs + wstep;
|
||
|
SDEBUG( printf("correct is: %p.%d/%d (%d parents)\n", correct.h, correct.spin, neighbors_of(correct.h), parents_of(correct.h)); )
|
||
|
heptspin hsl = hs0;
|
||
|
correct = correct+1; correct.h->s++;
|
||
|
connectHeptagons(hsl.h, hsl.spin, correct);
|
||
|
hsl = hsl - 1 + wstep - 1;
|
||
|
while(true) {
|
||
|
SDEBUG( printf("hsl at %p.%d/%d (%d parents)\n", hsl.h, hsl.spin, neighbors_of(hsl.h), parents_of(hsl.h)); )
|
||
|
if(hsl.spin == parents_of(hsl.h)) {
|
||
|
SDEBUG(printf("go left\n"))
|
||
|
hsl = hsl + wstep - 1;
|
||
|
}
|
||
|
else if(hsl.h->move[hsl.spin] && hsl.h->move[hsl.spin] != correct.h) {
|
||
|
SDEBUG(printf("prune\n");)
|
||
|
if(neighbors_of(hsl.h->move[hsl.spin]) != neighbors_of(correct.h)) {
|
||
|
SDEBUG(printf("neighbors mismatch while pruning %d -> %d\n",
|
||
|
neighbors_of(hsl.h->move[hsl.spin]),
|
||
|
neighbors_of(correct.h)
|
||
|
);)
|
||
|
exit(1);
|
||
|
}
|
||
|
prune(hsl.h->move[hsl.spin]);
|
||
|
}
|
||
|
else if(hsl.h->move[hsl.spin] == NULL) {
|
||
|
correct = correct+1; correct.h->s++;
|
||
|
SDEBUG( printf("connect\n") )
|
||
|
connectHeptagons(hsl.h, hsl.spin, correct);
|
||
|
}
|
||
|
else if(hsl.spin == parents_of(hsl.h)+1) {
|
||
|
SDEBUG( printf("single child so go left\n") )
|
||
|
hsl = hsl - 1 + wstep - 1;
|
||
|
}
|
||
|
else { SDEBUG( printf("ready\n"); ) break; }
|
||
|
}
|
||
|
contract(correct.h);
|
||
|
break;
|
||
|
}
|
||
|
case -2: {
|
||
|
SDEBUG( printf("ERROR: contraction (-2) not handled\n"); )
|
||
|
exit(1);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if(!sphere) for(int i=0; i<neighbors_of(h); i++) if(!h->move[i]) {
|
||
|
auto uv = adjacent[id_of(h)][(parent_index_of(h) + i) % neighbors_of(h)];
|
||
|
if(isize(adjacent[uv.first]) < 6) {
|
||
|
SDEBUG( printf("prebuilding weak neighbor\n") )
|
||
|
createStep(h, i);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void build_siblings(heptagon *h, int x) {
|
||
|
for(int i=right_sibling_of(h); i<neighbors_of(h); i++) createStep(h, i);
|
||
|
for(int i=0; i<=parents_of(h); i++) createStep(h, i);
|
||
|
}
|
||
|
|
||
|
void create_adjacent(heptagon *h, int d) {
|
||
|
indenter ind;
|
||
|
int nei = neighbors_of(h);
|
||
|
|
||
|
if(h->s == 0) {
|
||
|
auto& p = adjacent[id_of(h)];
|
||
|
for(int i=0; i<nei; i++)
|
||
|
build_child(h, i, p[i].first, p[i].second);
|
||
|
for(int i=0; i<nei; i++) {
|
||
|
heptagon *h1 = h->move[i];
|
||
|
heptagon *h2 = h->move[(i+nei-1)%nei];
|
||
|
connectHeptagons(h1, 1, heptspin(h2, isize(adjacent[id_of(h2)])-1));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
else {
|
||
|
int first = h->s + 1;
|
||
|
SDEBUG( printf("h=%p dist=%d d=%d/%d s=%d id=%d pindex=%d\n",
|
||
|
h, h->distance, d, nei, h->s, id_of(h), parent_index_of(h)); )
|
||
|
indenter ind2;
|
||
|
|
||
|
// these vertices are not children (or possibly contractions)
|
||
|
if(d < first || d > right_sibling_of(h))
|
||
|
connectHeptagons(h, d, heptspin(h, d-1) + wstep - 1 + wstep - 1);
|
||
|
else if(d == right_sibling_of(h)) {
|
||
|
connectHeptagons(h, d, heptspin(h, 0) + wstep + 1 + wstep + 1);
|
||
|
}
|
||
|
else {
|
||
|
build_siblings(h, 10);
|
||
|
build_siblings(h, -10);
|
||
|
if(h->move[d]) return;
|
||
|
heptspin hs(h, d);
|
||
|
// make sure no contractions on the left
|
||
|
heptspin hsl(h, d);
|
||
|
int steps = 0;
|
||
|
while(hsl.spin == parents_of(hsl.h) + 1 && steps < 100) {
|
||
|
hsl = hsl - 1 + wstep - 1;
|
||
|
steps++;
|
||
|
}
|
||
|
if(steps == 100) {
|
||
|
SDEBUG( printf("generating top\n"); )
|
||
|
auto uv = adjacent[id_of(hs.h)][(parent_index_of(hs.h) + hs.spin) % neighbors_of(hs.h)];
|
||
|
heptagon *newchild = build_child(hs.h, hs.spin, uv.first, uv.second);
|
||
|
hs = hs - 1 + wstep - 1;
|
||
|
while(hs.h != h) {
|
||
|
newchild->s++;
|
||
|
connectHeptagons(hs.h, hs.spin, heptspin(newchild, newchild->s-1));
|
||
|
hs = hs - 1 + wstep - 1;
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
// while trying to generate the last child, go right
|
||
|
while(true) {
|
||
|
if(h->move[d]) {
|
||
|
SDEBUG( printf("solved itself\n"); )
|
||
|
return;
|
||
|
}
|
||
|
SDEBUG( printf("going right at %p.%d/%d parents = %d\n", hs.h, hs.spin, neighbors_of(hs.h), parents_of(hs.h)); )
|
||
|
// rightmost child
|
||
|
if(hs.spin == right_sibling_of(hs.h) - 1)
|
||
|
hs = hs + 1 + wstep + 1;
|
||
|
else if(children_of(hs.h) <= 0) {
|
||
|
SDEBUG( printf("unexpected situation\n"); )
|
||
|
return;
|
||
|
}
|
||
|
else break;
|
||
|
}
|
||
|
auto uv = adjacent[id_of(hs.h)][(parent_index_of(hs.h) + hs.spin) % neighbors_of(hs.h)];
|
||
|
heptagon *newchild = build_child(hs.h, hs.spin, uv.first, uv.second);
|
||
|
bool add_parent = false;
|
||
|
while(true) {
|
||
|
SDEBUG( printf("going left at %p.%d/%d parents = %d\n", hs.h, hs.spin, neighbors_of(hs.h), parents_of(hs.h)); )
|
||
|
// add parent
|
||
|
if(hs.spin > parents_of(hs.h) && add_parent) {
|
||
|
SDEBUG( printf("add parent\n"); )
|
||
|
newchild->s++;
|
||
|
connectHeptagons(hs.h, hs.spin, heptspin(newchild, newchild->s-1));
|
||
|
add_parent = false;
|
||
|
}
|
||
|
// childless
|
||
|
if(children_of(hs.h) <= 0) {
|
||
|
SDEBUG( printf("unexpected situation v2\n"); )
|
||
|
return;
|
||
|
}
|
||
|
// lefmost child
|
||
|
else if(hs.spin == parents_of(hs.h)+1) {
|
||
|
SDEBUG( printf("(leftmost child)\n"); )
|
||
|
hs = hs - 1 + wstep - 1;
|
||
|
add_parent = true;
|
||
|
}
|
||
|
// no more parents
|
||
|
else break;
|
||
|
}
|
||
|
contract(newchild);
|
||
|
}
|
||
|
}
|
||
|
debug(h);
|
||
|
}
|
||
|
|
||
|
set<heptagon*> visited;
|
||
|
queue<pair<heptagon*, transmatrix>> drawqueue;
|
||
|
|
||
|
void enqueue(heptagon *h, const transmatrix& T) {
|
||
|
if(visited.count(h)) { return; }
|
||
|
visited.insert(h);
|
||
|
drawqueue.emplace(h, T);
|
||
|
}
|
||
|
|
||
|
transmatrix adjcell_matrix(heptagon *h, int d) {
|
||
|
int S = neighbors_of(h);
|
||
|
int pindex = parent_index_of(h);
|
||
|
int id = id_of(h);
|
||
|
auto& t1 = triangles[id][(pindex + d)%S];
|
||
|
|
||
|
heptagon *h2 = h->move[d];
|
||
|
|
||
|
int d2 = h->spin(d);
|
||
|
int id2 = id_of(h2);
|
||
|
int pindex2 = parent_index_of(h2);
|
||
|
auto& t2 = triangles[id2][(pindex2 + d2) % neighbors_of(h2)];
|
||
|
|
||
|
// * spin(-tri[id][pi+i].first) * xpush(t.second) * pispin * spin(tri[id'][p'+d'].first)
|
||
|
|
||
|
return spin(-t1.first) * xpush(t1.second) * spin(M_PI + t2.first);
|
||
|
}
|
||
|
|
||
|
void draw() {
|
||
|
visited.clear();
|
||
|
enqueue(viewctr.h, cview());
|
||
|
int idx = 0;
|
||
|
|
||
|
while(!drawqueue.empty()) {
|
||
|
auto p = drawqueue.front();
|
||
|
drawqueue.pop();
|
||
|
heptagon *h = p.first;
|
||
|
transmatrix V = p.second;
|
||
|
int id = id_of(h);
|
||
|
int S = isize(triangles[id]);
|
||
|
|
||
|
if(!nonbitrunc || id < 2*N) {
|
||
|
if(!dodrawcell(h->c7)) continue;
|
||
|
drawcell(h->c7, V, 0, false);
|
||
|
}
|
||
|
|
||
|
for(int i=0; i<S; i++) {
|
||
|
if(nonbitrunc && id >= 2*N && h->move[i] && id_of(h->move[i]) >= 2*N) continue;
|
||
|
enqueue(h->move[i], V * adjcell_matrix(h, i));
|
||
|
}
|
||
|
idx++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
transmatrix relative_matrix(heptagon *h2, heptagon *h1) {
|
||
|
if(gmatrix0.count(h2->c7) && gmatrix0.count(h1->c7))
|
||
|
return inverse(gmatrix0[h1->c7]) * gmatrix0[h2->c7];
|
||
|
transmatrix gm = Id, where = Id;
|
||
|
while(h1 != h2) {
|
||
|
for(int i=0; i<neighbors_of(h1); i++) if(h1->move[i] == h2) {
|
||
|
return gm * adjcell_matrix(h1, i) * where;
|
||
|
}
|
||
|
else if(h1->distance > h2->distance) {
|
||
|
gm = gm * adjcell_matrix(h1, 0);
|
||
|
h1 = h1->move[0];
|
||
|
}
|
||
|
else {
|
||
|
where = inverse(adjcell_matrix(h2, 0)) * where;
|
||
|
h2 = h2->move[0];
|
||
|
}
|
||
|
}
|
||
|
return gm * where;
|
||
|
}
|
||
|
|
||
|
int fix(heptagon *h, int spin) {
|
||
|
int type = isize(adjacent[id_of(h)]);
|
||
|
spin %= type;
|
||
|
if(spin < 0) spin += type;
|
||
|
return spin;
|
||
|
}
|
||
|
|
||
|
void parse_symbol(string s) {
|
||
|
int at = 0;
|
||
|
|
||
|
auto peek = [&] () { if(at == isize(s)) return char(0); else return s[at]; };
|
||
|
auto isnumber = [&] () { char p = peek(); return p >= '0' && p <= '9'; };
|
||
|
auto read_number = [&] () { int result = 0; while(isnumber()) result = 10 * result + peek() - '0', at++; return result; };
|
||
|
|
||
|
faces.clear();
|
||
|
while(true) {
|
||
|
if(peek() == ')' || peek() == '^' || (peek() == '(' && isize(faces)) || peek() == 0) break;
|
||
|
else if(isnumber()) faces.push_back(read_number());
|
||
|
else at++;
|
||
|
}
|
||
|
repetition = 1;
|
||
|
N = isize(faces);
|
||
|
invert.clear(); invert.resize(N, 0);
|
||
|
adj.clear(); adj.resize(N, 0); for(int i=0; i<N; i++) adj[i] = i;
|
||
|
while(peek() != 0) {
|
||
|
if(peek() == '^') at++, repetition = read_number();
|
||
|
else if(peek() == '(') {
|
||
|
at++; int a = read_number(); while(!isnumber() && !among(peek(), '(', '[', ')',']', 0)) at++;
|
||
|
if(isnumber()) { int b = read_number(); adj[a] = b; adj[b] = a; }
|
||
|
}
|
||
|
else if(peek() == '[') {
|
||
|
at++; int a = read_number(); while(!isnumber() && !among(peek(), '(', '[', ')',']', 0)) at++;
|
||
|
if(isnumber()) { int b = read_number(); adj[a] = b; adj[b] = a; invert[a] = invert[b] = true; }
|
||
|
else { invert[a] = true; }
|
||
|
}
|
||
|
else at++;
|
||
|
}
|
||
|
prepare();
|
||
|
}
|
||
|
|
||
|
#if CAP_COMMANDLINE
|
||
|
int readArgs() {
|
||
|
using namespace arg;
|
||
|
|
||
|
if(0) ;
|
||
|
else if(argis("-symbol")) {
|
||
|
targetgeometry = gSyntetic;
|
||
|
if(targetgeometry != geometry)
|
||
|
stop_game_and_switch_mode(rg::geometry);
|
||
|
showstartmenu = false;
|
||
|
shift(); parse_symbol(args());
|
||
|
}
|
||
|
else if(argis("-sd")) do_sdebug = true;
|
||
|
else return 1;
|
||
|
return 0;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
|
||
|
#if CAP_COMMANDLINE
|
||
|
auto hook =
|
||
|
addHook(hooks_args, 100, readArgs);
|
||
|
#endif
|
||
|
|
||
|
}
|
||
|
|
||
|
}
|