1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2025-01-17 20:53:02 +00:00
hyperrogue/rogueviz/kohonen.cpp

1562 lines
40 KiB
C++
Raw Normal View History

2017-09-01 20:14:02 +00:00
// Hyperbolic Rogue
// Copyright (C) 2011-2018 Zeno and Tehora Rogue, see 'hyper.cpp' for details
2017-09-01 20:14:02 +00:00
// Kohonen's self-organizing maps.
2017-09-01 20:14:02 +00:00
// This is a part of RogueViz, not a part of HyperRogue.
namespace rogueviz { namespace kohonen {
2017-09-01 20:14:02 +00:00
int columns;
2017-09-01 20:14:02 +00:00
typedef vector<double> kohvec;
struct sample {
kohvec val;
string name;
};
vector<sample> data;
map<int, int> sample_vdata_id;
2017-09-01 20:14:02 +00:00
int whattodraw[3] = {-2,-2,-2};
int min_group = 10, max_group = 10;
2017-09-01 20:14:02 +00:00
struct neuron {
kohvec net;
cell *where;
double udist;
int lpbak;
color_t col;
int allsamples, drawn_samples, csample, bestsample, max_group_here;
neuron() { drawn_samples = allsamples = bestsample = 0; max_group_here = max_group; }
2017-09-01 20:14:02 +00:00
};
vector<string> colnames;
kohvec weights;
vector<neuron> net;
int neuronId(neuron& n) { return &n - &(net[0]); }
void alloc(kohvec& k) { k.resize(columns); }
2017-09-01 20:14:02 +00:00
bool neurons_indexed = false;
int samples;
template<class T> T sqr(T x) { return x*x; }
vector<neuron*> whowon;
void normalize() {
alloc(weights);
for(int k=0; k<columns; k++) {
2017-09-01 20:14:02 +00:00
double sum = 0, sqsum = 0;
for(sample& s: data)
sum += s.val[k],
sqsum += s.val[k] * s.val[k];
double variance = sqsum/samples - sqr(sum/samples);
weights[k] = 1 / sqrt(variance);
}
}
double vnorm(kohvec& a, kohvec& b) {
double diff = 0;
for(int k=0; k<columns; k++) diff += sqr((a[k]-b[k]) * weights[k]);
2017-09-01 20:14:02 +00:00
return diff;
}
void sominit(int, bool load_compressed = false);
2017-09-01 20:14:02 +00:00
void uninit(int);
bool noshow = false;
vector<int> samples_to_show;
void loadsamples(const string& fname) {
fhstream f(fname, "rt");
if(!f.f) {
fprintf(stderr, "Could not load samples: %s\n", fname.c_str());
2017-09-01 20:14:02 +00:00
return;
}
if(!scan(f, columns)) {
printf("Bad format: %s\n", fname.c_str());
return;
}
printf("Loading samples: %s\n", fname.c_str());
2017-09-01 20:14:02 +00:00
while(true) {
sample s;
bool shown = false;
alloc(s.val);
if(feof(f.f)) break;
for(int i=0; i<columns; i++)
if(!scan(f, s.val[i])) { goto bigbreak; }
fgetc(f.f);
2017-09-01 20:14:02 +00:00
while(true) {
int c = fgetc(f.f);
2017-09-01 20:14:02 +00:00
if(c == -1 || c == 10 || c == 13) break;
if(c == '!' && s.name == "") shown = true;
else if(c != 32 && c != 9) s.name += c;
}
data.push_back(move(s));
if(shown)
samples_to_show.push_back(isize(data)-1);
2017-09-01 20:14:02 +00:00
}
bigbreak:
2018-06-22 12:47:24 +00:00
samples = isize(data);
2017-09-01 20:14:02 +00:00
normalize();
colnames.resize(columns);
for(int i=0; i<columns; i++) colnames[i] = "Column " + its(i);
2017-09-01 20:14:02 +00:00
uninit(0); sominit(1);
}
int tmax = 30000;
double distmul = 1;
double learning_factor = .1;
int qpct = 100;
int t, lpct, cells;
double maxdist;
neuron& winner(int id) {
double bdiff = HUGE_VAL;
2017-09-01 20:14:02 +00:00
neuron *bcell = NULL;
for(neuron& n: net) {
double diff = vnorm(n.net, data[id].val);
if(diff < bdiff) bdiff = diff, bcell = &n;
}
return *bcell;
}
void setindex(bool b) {
if(b == neurons_indexed) return;
neurons_indexed = b;
if(b) {
for(neuron& n: net) n.lpbak = n.where->landparam, n.where->landparam = neuronId(n);
}
else {
for(neuron& n: net) n.where->landparam = n.lpbak;
}
}
neuron *getNeuron(cell *c) {
if(!c) return NULL;
setindex(true);
if(c->landparam < 0 || c->landparam >= cells) return NULL;
neuron& ret = net[c->landparam];
if(ret.where != c) return NULL;
return &ret;
}
neuron *getNeuronSlow(cell *c) {
if(neurons_indexed) return getNeuron(c);
for(neuron& n: net) if(n.where == c) return &n;
return NULL;
}
double maxudist;
neuron *distfrom;
void coloring() {
if(noshow) return;
setindex(false);
bool besttofind = true;
for(int pid=0; pid<3; pid++) {
int c = whattodraw[pid];
if(c == -5) {
if(besttofind) {
besttofind = false;
for(neuron& n: net) {
double bdiff = 1e20;
for(auto p: sample_vdata_id) {
double diff = vnorm(n.net, data[p.first].val);
if(diff < bdiff) bdiff = diff, n.bestsample = p.second;
2017-09-01 20:14:02 +00:00
}
}
}
for(int i=0; i<cells; i++) {
part(net[i].where->landparam_color, pid) = part(vdata[net[i].bestsample].cp.color1, pid+1);
}
2017-09-01 20:14:02 +00:00
}
else {
vector<double> listing;
for(neuron& n: net) switch(c) {
case -4:
listing.push_back(log(5+n.allsamples));
2017-09-01 20:14:02 +00:00
break;
case -3:
if(distfrom)
listing.push_back(vnorm(n.net, distfrom->net));
else
listing.push_back(0);
break;
case -2:
listing.push_back(n.udist);
break;
case -1:
listing.push_back(-n.udist);
break;
default:
listing.push_back(n.net[c]);
break;
}
double minl = listing[0], maxl = listing[0];
for(double& d: listing) minl = min(minl, d), maxl = max(maxl, d);
if(maxl-minl < 1e-3) maxl = minl+1e-3;
for(int i=0; i<cells; i++)
part(net[i].where->landparam_color, pid) = (255 * (listing[i] - minl)) / (maxl - minl);
2017-09-01 20:14:02 +00:00
}
}
}
void distribute_neurons() {
whowon.resize(samples);
for(neuron& n: net) n.drawn_samples = 0, n.csample = 0;
for(auto p: sample_vdata_id) {
int s = p.first;
auto& w = winner(s);
whowon[s] = &w;
w.drawn_samples++;
}
2019-05-27 05:18:18 +00:00
ld rad = .25 * cgi.scalefactor;
for(auto p: sample_vdata_id) {
int id = p.second;
int s = p.first;
auto& w = *whowon[s];
vdata[id].m->base = w.where;
vdata[id].m->at =
spin(2*M_PI*w.csample / w.drawn_samples) * xpush(rad * (w.drawn_samples-1) / w.drawn_samples);
w.csample++;
}
shmup::fixStorage();
setindex(false);
}
2017-09-01 20:14:02 +00:00
void analyze() {
setindex(true);
maxudist = 0;
for(neuron& n: net) {
int qty = 0;
double total = 0;
forCellEx(c2, n.where) {
neuron *n2 = getNeuron(c2);
if(!n2) continue;
qty++;
total += sqrt(vnorm(n.net, n2->net));
}
n.udist = total / qty;
maxudist = max(maxudist, n.udist);
}
if(!noshow) distribute_neurons();
2017-09-01 20:14:02 +00:00
coloring();
}
bool coloring_3d(cell *c, const transmatrix& V) {
if(WDIM == 3 && on)
queuepoly(face_the_player(V), cgi.shRing, darkena(c->landparam_color, 0, 0xFF));
return false;
}
int khd = addHook(hooks_drawcell, 100, coloring_3d);
2017-09-01 20:14:02 +00:00
// traditionally Gaussian blur is used in the Kohonen algoritm
// but it does not seem to make much sense in hyperbolic geometry
// especially wrapped one.
// GAUSSIAN==1: use the Gaussian blur, on celldistance
// GAUSSIAN==2: use the Gaussian blur, on true distance
// GAUSSIAN==0: simulate the dispersion on our network
int gaussian = 0;
double mydistance(cell *c1, cell *c2) {
if(gaussian == 2) return hdist(tC0(ggmatrix(c1)), tC0(ggmatrix(c2)));
2017-09-01 20:14:02 +00:00
else return celldistance(c1, c2);
}
struct cellcrawler {
struct cellcrawlerdata {
cellwalker orig;
int from, spin, dist;
cellwalker target;
cellcrawlerdata(const cellwalker& o, int fr, int sp) : orig(o), from(fr), spin(sp) {}
};
vector<cellcrawlerdata> data;
void store(const cellwalker& o, int from, int spin, manual_celllister& cl) {
if(!cl.add(o.at)) return;
2017-09-01 20:14:02 +00:00
data.emplace_back(o, from, spin);
}
void build(const cellwalker& start) {
data.clear();
manual_celllister cl;
store(start, 0, 0, cl);
2018-06-22 12:47:24 +00:00
for(int i=0; i<isize(data); i++) {
2017-09-01 20:14:02 +00:00
cellwalker cw0 = data[i].orig;
for(int j=0; j<cw0.at->type; j++) {
2018-03-24 11:59:01 +00:00
cellwalker cw = cw0 + j + wstep;
if(!getNeuron(cw.at)) continue;
store(cw, i, j, cl);
2017-09-01 20:14:02 +00:00
}
}
if(gaussian) for(cellcrawlerdata& s: data)
s.dist = mydistance(s.orig.at, start.at);
2017-09-01 20:14:02 +00:00
}
void sprawl(const cellwalker& start) {
data[0].target = start;
2018-06-22 12:47:24 +00:00
for(int i=1; i<isize(data); i++) {
2017-09-01 20:14:02 +00:00
cellcrawlerdata& s = data[i];
s.target = data[s.from].target;
if(!s.target.at) continue;
2018-03-24 11:59:01 +00:00
s.target += s.spin;
if(!s.target.peek()) s.target.at = NULL;
2018-03-24 11:59:01 +00:00
else s.target += wstep;
2017-09-01 20:14:02 +00:00
}
}
vector<vector<ld>> dispersion;
};
2017-09-01 20:14:02 +00:00
double dispersion_end_at = 1.5;
double dispersion_precision = .0001;
int dispersion_each = 1;
int dispersion_count;
void buildcellcrawler(cell *c, cellcrawler& cr, int dir) {
cr.build(cellwalker(c,dir));
2017-09-01 20:14:02 +00:00
if(!gaussian) {
vector<ld> curtemp;
vector<ld> newtemp;
vector<int> qty;
vector<pair<ld*, ld*> > pairs;
2018-06-22 12:47:24 +00:00
int N = isize(net);
2017-09-01 20:14:02 +00:00
curtemp.resize(N, 0);
newtemp.resize(N, 0);
qty.resize(N, 0);
for(int i=0; i<N; i++)
forCellEx(c2, net[i].where) {
neuron *nj = getNeuron(c2);
if(nj) {
pairs.emplace_back(&curtemp[i], &newtemp[neuronId(*nj)]);
qty[i]++;
}
}
curtemp[neuronId(*getNeuron(c))] = 1;
ld vmin = 0, vmax = 1;
int iter;
auto &d = cr.dispersion;
2017-09-01 20:14:02 +00:00
d.clear();
printf("Building dispersion...\n");
for(iter=0; dispersion_count ? true : vmax > vmin * dispersion_end_at; iter++) {
if(iter % dispersion_each == 0) {
d.emplace_back(N);
auto& dispvec = d.back();
for(int i=0; i<N; i++) dispvec[i] = curtemp[neuronId(*getNeuron(cr.data[i].orig.at))] / vmax;
2018-06-22 12:47:24 +00:00
if(isize(d) == dispersion_count) break;
2017-09-01 20:14:02 +00:00
}
double df = dispersion_precision * (iter+1);
double df0 = df / ceil(df);
for(int i=0; i<df; i++) {
for(auto& p: pairs)
*p.second += *p.first;
for(int i=0; i<N; i++) {
curtemp[i] += (newtemp[i] / qty[i] - curtemp[i]) * df0;
newtemp[i] = 0;
}
}
vmin = vmax = curtemp[0];
for(int i=0; i<N; i++)
if(curtemp[i] < vmin) vmin = curtemp[i];
else if(curtemp[i] > vmax) vmax = curtemp[i];
}
2018-06-22 12:47:24 +00:00
dispersion_count = isize(d);
2017-09-01 20:14:02 +00:00
printf("Dispersion count = %d\n", dispersion_count);
}
}
map<int, cellcrawler> scc;
pair<int, int> get_cellcrawler_id(cell *c) {
2019-08-15 13:05:43 +00:00
if(among(geometry, gZebraQuotient, gMinimal, gField435, gField534) || (euwrap && !fulltorus) || IRREGULAR || (GDIM == 3 && sphere)) {
// Zebra Quotient does exhibit some symmetries,
// but these are so small anyway that it is safer to just build
// a crawler for every neuron
return make_pair(neuronId(*getNeuronSlow(c)), 0);
// not yet implemented for cylinder
}
if(fulltorus && (torusconfig::tmflags() & torusconfig::TF_KLEIN))
return make_pair(cell_to_pair(c).second * 2 + ctof(c), 0);
int id = 0, dir = 0;
#if CAP_GP
if(GOLDBERG) {
gp::local_info li = gp::get_local_info(c);
2019-08-09 12:12:33 +00:00
id = (li.relative.first & 15) + (li.relative.second & 15) * 16 + gmod(li.total_dir, S6) * 256;
// ld = li.last_dir;
}
#else
if(0) ;
#endif
else {
id = c->type == S7;
// if(id == 0) ld = c->c.spin(0);
}
/* if(geometry == gZebraQuotient) {
id = 8*id + ld;
id = 64 * id + c->master->zebraval;
return make_pair(id, 0);
} */
return make_pair(id, dir);
}
/* unit test: do the crawlers work correctly? */
bool verify_crawler(cellcrawler& cc, cellwalker cw) {
cc.sprawl(cw);
for(auto& d: cc.data) if(celldistance(cw.at, d.target.at) != d.dist)
return false;
vector<int> cellcounter(cells, 0);
for(auto& d: cc.data) cellcounter[d.target.at->landparam]++;
for(int i=0; i<cells; i++) if(cellcounter[i] != 1) return false;
return true;
}
void verify_crawlers() {
setindex(false);
gaussian = 1;
auto& allcells = currentmap->allcells();
2018-06-22 12:47:24 +00:00
cells = isize(allcells);
net.resize(cells);
for(int i=0; i<cells; i++) net[i].where = allcells[i];
setindex(true);
map<int, cellcrawler> allcrawlers;
int uniq = 0, failures = 0;
printf("Verifying crawlers...\n");
for(cell *c: allcells) {
auto id = get_cellcrawler_id(c);
if(allcrawlers.count(id.first)) {
bool b = verify_crawler(allcrawlers[id.first], cellwalker(c, id.second));
if(!b) {
printf("cell %p: type = %d id = %d dir = %d / earlier crawler failed\n", c, c->type, id.first, id.second);
failures++;
}
}
else {
for(int i=0; i<c->type; i++)
for(auto& cc: allcrawlers) if(verify_crawler(cc.second, cellwalker(c, i))) {
printf("cell %p: type = %d id = %d dir = %d / also works id %d in direction %d\n", c, c->type, id.first, id.second, cc.first, i);
uniq--;
goto breakcheck;
}
breakcheck:
cellcrawler cr;
cr.build(cellwalker(c, id.second));
allcrawlers[id.first] = move(cr);
uniq++;
}
}
2018-06-22 12:47:24 +00:00
printf("Crawlers constructed: %d (%d unique, %d failures)\n", isize(allcrawlers), uniq, failures);
setindex(false);
if(failures) exit(1);
}
2017-09-01 20:14:02 +00:00
bool finished() { return t == 0; }
int krad;
double ttpower = 1;
void step() {
if(t == 0) return;
sominit(2);
double tt = (t-1.) / tmax;
tt = pow(tt, ttpower);
double sigma = maxdist * tt;
int dispid = int(dispersion_count * tt);
if(qpct) {
int pct = (int) ((qpct * (t+.0)) / tmax);
if(pct != lpct) {
printf("pct %d lpct %d\n", pct, lpct);
lpct = pct;
analyze();
if(gaussian)
printf("t = %6d/%6d %3d%% sigma=%10.7lf maxudist=%10.7lf\n", t, tmax, pct, sigma, maxudist);
else
printf("t = %6d/%6d %3d%% dispid=%5d maxudist=%10.7lf\n", t, tmax, pct, dispid, maxudist);
}
}
int id = hrand(samples);
neuron& n = winner(id);
whowon.resize(samples);
whowon[id] = &n;
/*
for(neuron& n2: net) {
int d = celldistance(n.where, n2.where);
double nu = learning_factor;
// nu *= exp(-t*(double)maxdist/perdist);
// nu *= exp(-t/t2);
nu *= exp(-sqr(d/sigma));
for(int k=0; k<columns; k++)
2017-09-01 20:14:02 +00:00
n2.net[k] += nu * (irisdata[id][k] - n2.net[k]);
} */
auto cid = get_cellcrawler_id(n.where);
cellcrawler& s = scc[cid.first];
s.sprawl(cellwalker(n.where, cid.second));
2017-09-01 20:14:02 +00:00
vector<double> fake(1,1);
auto it = gaussian ? fake.begin() : s.dispersion[dispid].begin();
2017-09-01 20:14:02 +00:00
for(auto& sd: s.data) {
neuron *n2 = getNeuron(sd.target.at);
2017-09-01 20:14:02 +00:00
if(!n2) continue;
double nu = learning_factor;
if(gaussian)
nu *= exp(-sqr(sd.dist/sigma));
else
nu *= *(it++);
for(int k=0; k<columns; k++)
2017-09-01 20:14:02 +00:00
n2->net[k] += nu * (data[id].val[k] - n2->net[k]);
}
t--;
if(t == 0) analyze();
}
int initdiv = 1;
int inited = 0;
void uninit(int initto) {
if(inited > initto) inited = initto;
}
vector<double> bdiffs;
vector<unsigned short> bids;
vector<double> bdiffn;
int showsample(int id) {
if(sample_vdata_id.count(id))
return sample_vdata_id[id];
if(bids.size()) {
if(net[bids[id]].drawn_samples >= net[bids[id]].max_group_here) {
ld bdist = 1e18;
int whichid = -1;
for(auto p: sample_vdata_id) {
int s = p.first;
if(bids[s] == bids[id]) {
ld cdist = vnorm(data[s].val, data[id].val);
if(cdist < bdist) bdist = cdist, whichid = p.second;
}
}
return whichid;
}
net[bids[id]].drawn_samples++;
}
2017-09-01 20:14:02 +00:00
int i = vdata.size();
sample_vdata_id[id] = i;
2017-09-01 20:14:02 +00:00
vdata.emplace_back();
auto& v = vdata.back();
v.name = data[id].name;
v.cp = dftcolor;
createViz(i, bids.size() ? net[bids[id]].where : cwt.at, Id);
2017-09-01 20:14:02 +00:00
v.m->store();
return i;
2017-09-01 20:14:02 +00:00
}
2018-07-05 05:31:27 +00:00
int showsample(string s) {
if(s == "") return -1;
int ret = -1;
2017-09-01 20:14:02 +00:00
for(int i=0; i<samples; i++) {
if(s[0] != '*' && data[i].name == s)
2018-07-05 05:31:27 +00:00
ret = showsample(i);
2017-09-01 20:14:02 +00:00
if(s[0] == '*' && data[i].name.find(s.substr(1)) != string::npos)
2018-07-05 05:31:27 +00:00
ret = showsample(i);
2017-09-01 20:14:02 +00:00
}
2018-07-05 05:31:27 +00:00
return ret;
2017-09-01 20:14:02 +00:00
}
void showbestsamples() {
vector<int> samplesbak;
for(auto& n: net)
if(n.allsamples)
2017-09-01 20:14:02 +00:00
showsample(n.bestsample);
analyze();
}
int kohrestrict = 1000000;
2017-09-01 20:14:02 +00:00
void sominit(int initto, bool load_compressed) {
2017-09-01 20:14:02 +00:00
if(inited < 1 && initto >= 1) {
inited = 1;
if(!samples && !load_compressed) {
2017-09-01 20:14:02 +00:00
fprintf(stderr, "Error: SOM without samples\n");
exit(1);
}
init(); kind = kKohonen;
printf("Initializing SOM (1)\n");
vector<cell*> allcells;
if(krad) {
celllister cl(cwt.at, krad, 1000000, NULL);
2017-09-01 20:14:02 +00:00
allcells = cl.lst;
}
else allcells = currentmap->allcells();
if(isize(allcells) > kohrestrict) {
map<cell*, int> clindex;
for(int i=0; i<isize(allcells); i++) clindex[allcells[i]] = i;
sort(allcells.begin(), allcells.end(), [&clindex] (cell *c1, cell *c2) {
return make_pair(hdist0(tC0(ggmatrix(c1))), clindex[c1]) <
make_pair(hdist0(tC0(ggmatrix(c2))), clindex[c2]);
});
int at = kohrestrict;
ld dist = hdist0(tC0(ggmatrix(allcells[at-1])));
while(at < isize(allcells) && hdist0(tC0(ggmatrix(allcells[at]))) < dist + 1e-6) at++;
int at1 = kohrestrict;
while(at1 > 0 && hdist0(tC0(ggmatrix(allcells[at1-1]))) > dist - 1e-6) at1--;
printf("Cells numbered [%d,%d) are in the same distance\n", at1, at);
allcells.resize(kohrestrict);
}
2017-09-01 20:14:02 +00:00
2018-06-22 12:47:24 +00:00
cells = isize(allcells);
2017-09-01 20:14:02 +00:00
net.resize(cells);
for(int i=0; i<cells; i++) net[i].where = allcells[i], allcells[i]->landparam = i;
for(int i=0; i<cells; i++) {
net[i].where->land = laCanvas;
alloc(net[i].net);
if(samples)
for(int k=0; k<columns; k++)
2017-09-01 20:14:02 +00:00
for(int z=0; z<initdiv; z++)
net[i].net[k] += data[hrand(samples)].val[k] / initdiv;
}
for(neuron& n: net) for(int d=BARLEV; d>=7; d--) setdist(n.where, d, NULL);
printf("samples = %d (%d) cells = %d\n", samples, isize(sample_vdata_id), cells);
if(!noshow) for(int s: samples_to_show) {
int vdid = isize(vdata);
sample_vdata_id[s] = vdid;
vdata.emplace_back();
auto &vd = vdata.back();
vd.name = data[s].name;
vd.cp = dftcolor;
createViz(vdid, cwt.at, Id);
storeall(vdid);
2017-09-01 20:14:02 +00:00
}
samples_to_show.clear();
2017-09-01 20:14:02 +00:00
analyze();
}
if(inited < 2 && initto >= 2) {
inited = 2;
DEBB(DF_LOG, ("Initializing SOM (2)"));
2017-09-01 20:14:02 +00:00
if(gaussian) {
DEBB(DF_LOG, ("dist = ", fts(mydistance(net[0].where, net[1].where))));
2017-09-01 20:14:02 +00:00
cell *c1 = net[cells/2].where;
vector<double> mapdist;
for(neuron &n2: net) mapdist.push_back(mydistance(c1,n2.where));
sort(mapdist.begin(), mapdist.end());
2018-06-22 12:47:24 +00:00
maxdist = mapdist[isize(mapdist)*5/6] * distmul;
DEBB(DF_LOG, ("maxdist = ", fts(maxdist)));
2017-09-01 20:14:02 +00:00
}
dispersion_count = 0;
scc.clear();
2019-04-03 18:35:12 +00:00
for(int i=0; i<cells; i++) {
cell *c = net[i].where;
auto cid = get_cellcrawler_id(c);
if(!scc.count(cid.first)) {
DEBB(DF_LOG, ("Building cellcrawler id = ", itsh(cid.first)));
buildcellcrawler(c, scc[cid.first], cid.second);
}
}
2017-09-01 20:14:02 +00:00
lpct = -46130;
}
}
2018-07-09 18:09:56 +00:00
void describe_cell(cell *c) {
2017-09-01 20:14:02 +00:00
if(cmode & sm::HELP) return;
2018-07-09 18:09:56 +00:00
if(kind != kKohonen) return;
2017-09-01 20:14:02 +00:00
neuron *n = getNeuronSlow(c);
if(!n) return;
2018-09-07 13:15:53 +00:00
string h;
h += "cell number: " + its(neuronId(*n)) + " (" + its(n->allsamples) + ")\n";
h += "parameters:"; for(int k=0; k<columns; k++) h += " " + fts(n->net[k]);
h += ", u-matrix = " + fts(n->udist);
h += "\n";
2017-09-01 20:14:02 +00:00
vector<pair<double, int>> v;
for(int s=0; s<samples; s++) if(whowon[s] == n) v.emplace_back(vnorm(n->net, data[s].val), s);
for(int i=1; i<isize(v); i++) swap(v[i], v[rand() % (i+1)]);
2017-09-30 09:47:00 +00:00
sort(v.begin(), v.end(), [] (pair<double,int> a, pair<double,int> b) { return a.first < b.first; });
2017-09-01 20:14:02 +00:00
2018-06-22 12:47:24 +00:00
for(int i=0; i<isize(v) && i<20; i++) {
2017-09-01 20:14:02 +00:00
int s = v[i].second;
2018-09-07 13:15:53 +00:00
h += "sample "+its(s)+":";
for(int k=0; k<columns; k++) h += " " + fts(data[s].val[k]);
h += " "; h += data[s].name; h += "\n";
2017-09-01 20:14:02 +00:00
}
2018-09-07 13:15:53 +00:00
appendHelp(h);
2017-09-01 20:14:02 +00:00
}
namespace levelline {
struct levelline {
int column, qty;
color_t color;
2017-09-01 20:14:02 +00:00
vector<double> values;
bool modified;
};
vector<levelline> levellines;
bool on;
void create() {
int xlalpha = part(default_edgetype.color, 0);
for(int i=0; i<columns; i++) {
2017-09-01 20:14:02 +00:00
levellines.emplace_back();
levelline& lv = levellines.back();
lv.column = i;
lv.color = ((hrandpos() & 0xFFFFFF) << 8) | xlalpha;
lv.qty = 0;
}
}
void build() {
if(levellines.size() == 0) create();
on = false;
for(auto& lv: levellines) {
if(!lv.qty) { lv.values.clear(); continue; }
on = true;
if(!lv.modified) continue;
lv.modified = false;
vector<double> sample;
for(int j=0; j<=1024; j++) sample.push_back(data[hrand(samples)].val[lv.column]);
sort(sample.begin(), sample.end());
lv.values.clear();
lv.values.push_back(-1e10);
for(int j=0; j<=1024; j+=1024 >> (lv.qty)) lv.values.push_back(sample[j]);
lv.values.push_back(1e10);
}
}
void draw() {
if(!on) return;
for(auto& g: gmatrix) {
cell *c1 = g.first;
transmatrix T = g.second;
neuron *n1 = getNeuron(c1);
if(!n1) continue;
for(int i=0; i<c1->type; i++) {
cell *c2 = c1->move(i);
2017-09-01 20:14:02 +00:00
if(!c2) continue;
cell *c3 = c1->modmove(i-1);
2017-09-01 20:14:02 +00:00
if(!c3) continue;
if(!gmatrix.count(c2)) continue;
if(!gmatrix.count(c3)) continue;
double d2 = hdist(tC0(T), tC0(gmatrix[c2]));
double d3 = hdist(tC0(T), tC0(gmatrix[c3]));
neuron *n2 = getNeuron(c2);
if(!n2) continue;
neuron *n3 = getNeuron(c3);
if(!n3) continue;
for(auto& l: levellines) {
auto val1 = n1->net[l.column];
auto val2 = n2->net[l.column];
auto val3 = n3->net[l.column];
auto v1 = lower_bound(l.values.begin(), l.values.end(), val1);
auto v2 = lower_bound(l.values.begin(), l.values.end(), val2);
auto v3 = lower_bound(l.values.begin(), l.values.end(), val3);
auto draw = [&] () {
auto vmid = *v1;
queueline(
2018-08-19 14:28:36 +00:00
(T * ddspin(c1,i) * xpush0(d2 * (vmid-val1) / (val2-val1))),
(T * ddspin(c1,i-1) * xpush0(d3 * (vmid-val1) / (val3-val1))),
2018-08-01 09:07:22 +00:00
l.color, vid.linequality);
2017-09-01 20:14:02 +00:00
};
while(v1 < v2 && v1 < v3) {
draw();
v1++;
}
while(v1 > v2 && v1 > v3) {
v1--;
draw();
}
}
}
}
setindex(false);
}
void show() {
if(levellines.size() == 0) create();
gamescreen(0);
2018-12-13 16:02:10 +00:00
cmode = sm::SIDE | sm::MAYDARK;
2017-09-01 20:14:02 +00:00
dialog::init("level lines");
char nx = 'a';
for(auto &l : levellines) {
dialog::addSelItem(colnames[l.column], its(l.qty), nx++);
dialog::lastItem().colorv = l.color >> 8;
}
dialog::addItem("exit menu", '0');
dialog::addItem("shift+letter to change color", 0);
dialog::display();
keyhandler = [] (int sym, int uni) {
dialog::handleNavigation(sym, uni);
2018-06-22 12:47:24 +00:00
if(uni >= 'a' && uni - 'a' + isize(levellines)) {
2017-09-01 20:14:02 +00:00
auto& l = levellines[uni - 'a'];
dialog::editNumber(l.qty, 0, 10, 1, 0, colnames[l.column],
XLAT("Controls the number of level lines."));
dialog::reaction = [&l] () {
l.modified = true;
build();
};
}
2018-06-22 12:47:24 +00:00
else if(uni >= 'A' && uni - 'A' + isize(levellines)) {
2017-09-01 20:14:02 +00:00
auto& l = levellines[uni - 'A'];
dialog::openColorDialog(l.color, NULL);
dialog::dialogflags |= sm::MAYDARK | sm::SIDE;
2017-09-01 20:14:02 +00:00
}
else if(doexiton(sym, uni)) popScreen();
};
}
}
void ksave(const string& fname) {
2017-09-01 20:14:02 +00:00
sominit(1);
FILE *f = fopen(fname.c_str(), "wt");
2017-09-01 20:14:02 +00:00
if(!f) {
fprintf(stderr, "Could not save the network\n");
return;
}
fprintf(f, "%d %d\n", cells, t);
for(neuron& n: net) {
for(int k=0; k<columns; k++)
2017-09-01 20:14:02 +00:00
fprintf(f, "%.9lf ", n.net[k]);
fprintf(f, "\n");
}
fclose(f);
}
void kload(const string& fname) {
2017-09-01 20:14:02 +00:00
sominit(1);
int xcells;
fhstream f(fname.c_str(), "rt");
if(!f.f) {
fprintf(stderr, "Could not load the network: %s\n", fname.c_str());
return;
}
if(!scan(f, xcells, t)) {
fprintf(stderr, "Bad network format: %s\n", fname.c_str());
2017-09-01 20:14:02 +00:00
return;
}
printf("Loading the network %s...\n", fname.c_str());
2017-09-01 20:14:02 +00:00
if(xcells != cells) {
2018-05-18 11:57:55 +00:00
fprintf(stderr, "Error: bad number of cells (x=%d c=%d)\n", xcells, cells);
2017-09-01 20:14:02 +00:00
exit(1);
}
for(neuron& n: net) {
for(int k=0; k<columns; k++) if(!scan(f, n.net[k])) return;
2017-09-01 20:14:02 +00:00
}
analyze();
}
void ksavew(const string& fname) {
2017-09-01 20:14:02 +00:00
sominit(1);
FILE *f = fopen(fname.c_str(), "wt");
2017-09-01 20:14:02 +00:00
if(!f) {
fprintf(stderr, "Could not save the weights: %s\n", fname.c_str());
2017-09-01 20:14:02 +00:00
return;
}
printf("Saving the network to %s...\n", fname.c_str());
for(int i=0; i<columns; i++)
2017-09-01 20:14:02 +00:00
fprintf(f, "%s=%.9lf\n", colnames[i].c_str(), weights[i]);
fclose(f);
}
void kloadw(const string& fname) {
2017-09-01 20:14:02 +00:00
sominit(1);
FILE *f = fopen(fname.c_str(), "rt");
2017-09-01 20:14:02 +00:00
if(!f) {
fprintf(stderr, "Could not load the weights\n");
return;
}
for(int i=0; i<columns; i++) {
2017-09-01 20:14:02 +00:00
string s1, s2;
char kind = 0;
while(true) {
int c = fgetc(f);
if(c == 10 || c == 13 || c == -1) {
if(s1 == "" && !kind && c != -1) continue;
if(s1 != "") colnames[i] = s1;
if(kind == '=') weights[i] = atof(s2.c_str());
if(kind == '*') weights[i] *= atof(s2.c_str());
if(kind == '/') weights[i] /= atof(s2.c_str());
if(c == -1) break;
goto nexti;
}
else if(c == '=' || c == '/' || c == '*') kind = c;
else (kind?s2:s1) += c;
}
nexti: ;
}
fclose(f);
analyze();
}
unsigned lastprogress;
void progress(string s) {
if(SDL_GetTicks() >= lastprogress + (noGUI ? 500 : 100)) {
if(noGUI)
printf("%s\n", s.c_str());
else {
clearMessages();
addMessage(s);
mainloopiter();
}
lastprogress = SDL_GetTicks();
}
}
template<class T> void save_raw(string fname, const vector<T>& v) {
FILE *f = fopen(fname.c_str(), "wb");
fwrite(&v[0], sizeof(v[0]), v.size(), f);
fclose(f);
}
2017-09-01 20:14:02 +00:00
template<class T> void load_raw(string fname, vector<T>& v) {
FILE *f = fopen(fname.c_str(), "rb");
if(!f) { fprintf(stderr, "file does not exist: %s\n", fname.c_str()); exit(1); }
fseek(f, 0, SEEK_END);
auto s = ftell(f);
rewind(f);
v.resize(s / sizeof(v[0]));
2018-07-14 06:45:14 +00:00
hr::ignore(fread(&v[0], sizeof(v[0]), v.size(), f));
fclose(f);
}
2017-09-01 20:14:02 +00:00
bool groupsizes_known = false;
void do_classify() {
sominit(1);
if(bids.empty()) {
printf("Classifying...\n");
bids.resize(samples, 0);
bdiffs.resize(samples, 1e20);
for(int s=0; s<samples; s++) {
for(int n=0; n<cells; n++) {
double diff = vnorm(net[n].net, data[s].val);
if(diff < bdiffs[s]) bdiffs[s] = diff, bids[s] = n, whowon[s] = &net[n];
}
if(!(s % 128))
progress("Classifying: " + its(s) + "/" + its(samples));
2017-09-01 20:14:02 +00:00
}
}
if(bdiffs.empty()) {
printf("Computing distances...\n");
bdiffs.resize(samples, 1e20);
for(int s=0; s<samples; s++)
bdiffs[s] = vnorm(net[bids[s]].net, data[s].val);
}
if(bdiffn.empty()) {
printf("Finding samples...\n");
bdiffn.resize(cells, 1e20);
for(int s=0; s<samples; s++) {
int n = bids[s];
double diff = bdiffs[s];
if(diff < bdiffn[n]) bdiffn[n] = diff, net[n].bestsample = s;
}
}
whowon.resize(samples);
for(int i=0; i<samples; i++) whowon[i] = &net[bids[i]];
for(neuron& n: net) n.allsamples = 0;
for(int sn: bids) net[sn].allsamples++;
if(!groupsizes_known) {
groupsizes_known = true;
vector<int> neurons_to_sort;
for(int i=0; i<cells; i++) neurons_to_sort.push_back(i);
sort(neurons_to_sort.begin(), neurons_to_sort.end(), [] (int i, int j) { return net[i].allsamples < net[j].allsamples; });
int last = 0;
int lastfirst = 0, lastlast = 0;
for(int i=0; i<cells; i++) {
int ngroup = min_group + ((max_group - min_group) * i + (cells/2)) / (cells-1);
int as = net[neurons_to_sort[i]].allsamples;
if(ngroup != last) {
if(last) printf("%d: %d - %d\n", last, lastfirst, lastlast);
last = ngroup; lastfirst = as;
}
net[neurons_to_sort[i]].max_group_here = ngroup;
lastlast = as;
}
if(last) printf("%d: %d - %d\n", last, lastfirst, lastlast);
}
coloring();
}
2017-09-01 20:14:02 +00:00
void fillgroups() {
do_classify();
vector<int> samples_to_sort;
for(int i=0; i<samples; i++) samples_to_sort.push_back(i);
hrandom_shuffle(&samples_to_sort[0], samples);
for(int i=0; i<samples; i++) if(net[bids[i]].drawn_samples < net[bids[i]].max_group_here)
showsample(i);
distribute_neurons();
}
void kclassify(const string& fname_classify) {
2017-09-01 20:14:02 +00:00
do_classify();
2017-09-01 20:14:02 +00:00
if(fname_classify != "") {
printf("Listing classification to %s...\n", fname_classify.c_str());
FILE *f = fopen(fname_classify.c_str(), "wt");
2017-09-01 20:14:02 +00:00
if(!f) {
printf("Failed to open file\n");
}
else {
for(int s=0; s<samples; s++)
fprintf(f, "%s;%d\n", data[s].name.c_str(), bids[s]);
fclose(f);
}
}
}
void kclassify_save_raw(const string& fname_classify) {
printf("Saving raw classify to %s...\n", fname_classify.c_str());
do_classify();
save_raw(fname_classify, bids);
}
void kclassify_load_raw(const string& fname_classify) {
printf("Loading raw classify from %s...\n", fname_classify.c_str());
load_raw(fname_classify, bids);
do_classify();
}
void load_edges(const string& fname_edges, string edgename, int pick = 0) {
do_classify();
auto t = add_edgetype(edgename);
vector<pair<int, int>> edgedata;
load_raw(fname_edges, edgedata);
int N = isize(edgedata);
if(pick > 0 && pick < N) {
for(int i=1; i<N; i++) swap(edgedata[i], edgedata[hrand(i+1)]);
edgedata.resize(N = pick);
}
t->visible_from = 1. / N;
vector<pair<int, int>> edgedata2;
for(auto p: edgedata)
edgedata2.emplace_back(showsample(p.first), showsample(p.second));
distribute_neurons();
int i = 0;
for(auto p: edgedata2)
if(p.first >= 0 && p.second >= 0)
addedge(p.first, p.second, 1 / (i+++.5), true, t);
else {
printf("error reading graph\n");
exit(1);
}
2017-09-01 20:14:02 +00:00
}
void random_edges(int q) {
auto t = add_edgetype("random");
vector<int> ssamp;
for(auto p: sample_vdata_id) ssamp.push_back(p.second);
for(int i=0; i<q; i++)
addedge(ssamp[hrand(isize(ssamp))], ssamp[hrand(isize(ssamp))], 0, true, t);
}
void klistsamples(const string& fname_samples, bool best, bool colorformat) {
if(fname_samples != "") {
2017-09-01 20:14:02 +00:00
printf("Listing samples...\n");
FILE *f = fopen(fname_samples.c_str(), "wt");
2017-09-01 20:14:02 +00:00
if(!f) {
printf("Failed to open file\n");
}
else {
auto klistsample = [f, colorformat] (int id, int neu) {
if(colorformat) {
fprintf(f, "%s;+#%d\n", data[id].name.c_str(), neu);
}
else {
for(int k=0; k<columns; k++)
2017-09-01 20:14:02 +00:00
fprintf(f, "%.4lf ", data[id].val[k]);
fprintf(f, "!%s\n", data[id].name.c_str());
}
};
if(!colorformat) fprintf(f, "%d\n", columns);
2017-09-01 20:14:02 +00:00
if(best)
for(int n=0; n<cells; n++) {
if(!net[n].allsamples && !net[n].drawn_samples) { if(!colorformat) fprintf(f, "\n"); continue; }
2017-09-01 20:14:02 +00:00
klistsample(net[n].bestsample, n);
}
else
for(auto p: sample_vdata_id) {
int id = p.first;
klistsample(id, neuronId(*(whowon[id])));
}
2017-09-01 20:14:02 +00:00
fclose(f);
}
}
}
void neurondisttable(const string &name) {
2018-04-21 14:19:29 +00:00
FILE *f = fopen(name.c_str(), "wt");
2017-09-01 20:14:02 +00:00
if(!f) {
2018-04-21 14:19:29 +00:00
printf("Could not open file: %s\n", name.c_str());
2017-09-01 20:14:02 +00:00
return;
}
2018-06-22 12:47:24 +00:00
int neurons = isize(net);
2017-09-01 20:14:02 +00:00
fprintf(f, "%d\n", neurons);
for(int i=0; i<neurons; i++) {
for(int j=0; j<neurons; j++) fprintf(f, "%3d", celldistance(net[i].where, net[j].where));
// todo: build the table correctly for gaussian=2
fprintf(f, "\n");
}
fclose(f);
}
void steps() {
if(!kohonen::finished()) {
unsigned int t = SDL_GetTicks();
while(SDL_GetTicks() < t+20) kohonen::step();
setindex(false);
}
}
void showMenu() {
string parts[3] = {"red", "green", "blue"};
for(int i=0; i<3; i++) {
string c;
if(whattodraw[i] == -1) c = "u-matrix";
else if(whattodraw[i] == -2) c = "u-matrix reversed";
else if(whattodraw[i] == -3) c = "distance from marked ('m')";
else if(whattodraw[i] == -4) c = "number of samples";
else if(whattodraw[i] == -5) c = "best sample's color";
else if(whattodraw[i] == -6) c = "sample names to colors";
else c = colnames[whattodraw[i]];
dialog::addSelItem(XLAT("coloring (%1)", parts[i]), c, '1'+i);
}
dialog::addItem("coloring (all)", '0');
dialog::addItem("level lines", '4');
}
bool handleMenu(int sym, int uni) {
if(uni >= '1' && uni <= '3') {
int i = uni - '1';
whattodraw[i]++;
if(whattodraw[i] == columns) whattodraw[i] = -5;
2017-09-01 20:14:02 +00:00
coloring();
return true;
}
if(uni == '0') {
for(char x: {'1','2','3'}) handleMenu(x, x);
return true;
}
if(uni == '4') {
pushScreen(levelline::show);
return true;
}
return false;
}
void save_compressed(string name) {
// save everything in compressed form
fhstream f(name, "wb");
if(!f.f) {
printf("failed to open for save_compressed: %s\n", name.c_str());
return;
}
// save columns
f.write(columns);
for(int i=0; i<columns; i++) f.write(colnames[i]);
for(int i=0; i<columns; i++) hwrite_raw<float>(f, weights[i]);
// save neurons
f.write<int>(isize(net));
for(int i=0; i<isize(net); i++)
for(int j=0; j<columns; j++) hwrite_raw<float>(f, net[i].net[j]);
// save shown samples
map<int, int> saved_id;
f.write<int>(isize(sample_vdata_id));
int index = 0;
for(auto p: sample_vdata_id) {
int i = p.first;
for(int j=0; j<columns; j++) hwrite_raw<float>(f, data[i].val[j]);
f.write(data[i].name);
int id = p.second;
saved_id[id] = index++;
auto& vd = vdata[id];
struct colorpair_old { color_t color1, color2; char shade; } cpo;
cpo.color1 = vd.cp.color1;
cpo.color2 = vd.cp.color2;
cpo.shade = vd.cp.shade;
hwrite_raw(f, cpo);
}
// save edge types
f.write<int>(isize(edgetypes));
for(auto&et: edgetypes) {
f.write(et->name);
hwrite_raw<float>(f, et->visible_from);
f.write(et->color);
}
// save edge infos
f.write<int>(isize(edgeinfos));
for(auto& ei: edgeinfos) {
for(int x=0; x<isize(edgetypes); x++)
if(ei->type == &*edgetypes[x]) f.write_char(x);
f.write(saved_id[ei->i]);
f.write(saved_id[ei->j]);
hwrite_raw<float>(f, ei->weight);
}
}
void load_compressed(string name) {
// save everything in compressed form
fhstream f(name, "rb");
if(!f.f) {
printf("failed to open for load_compressed: %s\n", name.c_str());
return;
}
// load columns
f.read(columns);
colnames.resize(columns);
for(int i=0; i<columns; i++) f.read(colnames[i]);
alloc(weights);
for(int i=0; i<columns; i++) weights[i] = f.get_raw<float>();
samples = 0; sominit(1, true);
// load neurons
int N = f.get<int>();
if(cells != N) {
fprintf(stderr, "Error: bad number of cells (N=%d c=%d)\n", N, cells);
exit(1);
}
for(neuron& n: net)
for(int k=0; k<columns; k++)
n.net[k] = f.get_raw<float>();
// load data
samples = f.get<int>();
data.resize(samples);
int id = 0;
for(auto& d: data) {
alloc(d.val);
for(int j=0; j<columns; j++)
d.val[j] = f.get_raw<float>();
f.read(d.name);
int i = vdata.size();
sample_vdata_id[id] = i;
vdata.emplace_back();
auto& v = vdata.back();
v.name = data[i].name;
struct colorpair_old { color_t color1, color2; char shade; } cpo;
hread_raw(f, cpo);
v.cp.color1 = cpo.color1;
v.cp.color2 = cpo.color2;
v.cp.shade = cpo.shade;
createViz(i, cwt.at, Id);
v.m->store();
id++;
}
// load edge types
int qet = f.get<int>();
for(int i=0; i<qet; i++) {
auto et = add_edgetype(f.get<string>());
et->visible_from = f.get_raw<float>();
f.read(et->color);
}
// load edge infos
int qei = f.get<int>();
for(int i=0; i<qei; i++) {
auto t = edgetypes[f.read_char()];
int ei = f.get<int>();
int ej = f.get<int>();
float w = f.get_raw<float>();
addedge(ei, ej, w, true, &*t);
}
analyze();
}
2017-12-01 23:27:16 +00:00
#if CAP_COMMANDLINE
2017-09-01 20:14:02 +00:00
int readArgs() {
using namespace arg;
// #1: load the samples
if(argis("-som")) {
PHASE(3);
shift(); kohonen::loadsamples(args());
}
// #2: set parameters
else if(argis("-somkrad")) {
gaussian = 0; uninit(0);
}
2019-04-03 18:35:12 +00:00
else if(argis("-somskrad")) {
shift(); krad = argi();
}
2017-09-01 20:14:02 +00:00
else if(argis("-somsim")) {
gaussian = 0; uninit(1);
}
else if(argis("-somcgauss")) {
gaussian = 1; uninit(1);
}
else if(argis("-somggauss")) {
gaussian = 2; uninit(1);
}
else if(argis("-sompct")) {
shift(); qpct = argi();
}
else if(argis("-sompower")) {
shift_arg_formula(ttpower);
2017-09-01 20:14:02 +00:00
}
else if(argis("-somparam")) {
shift_arg_formula((gaussian ? distmul : dispersion_end_at));
2017-09-01 20:14:02 +00:00
if(dispersion_end_at <= 1) {
fprintf(stderr, "Dispersion parameter illegal\n");
dispersion_end_at = 1.5;
}
uninit(1);
}
else if(argis("-sominitdiv")) {
shift(); initdiv = argi(); uninit(0);
}
else if(argis("-somtmax")) {
shift(); t = (t*1./tmax) * argi();
tmax = argi();
}
else if(argis("-somlearn")) {
// this one can be changed at any moment
shift_arg_formula(learning_factor);
2017-09-01 20:14:02 +00:00
}
else if(argis("-somrun")) {
t = tmax; sominit(1);
}
// #3: load the neuron data (usually without #2)
else if(argis("-somload")) {
PHASE(3);
shift(); kohonen::kload(args());
}
// #4: run, stop etc.
else if(argis("-somrunto")) {
int i = argi();
shift(); while(t > i) {
if(t % 128 == 0) progress("Steps left: " + its(t));
kohonen::step();
}
}
else if(argis("-somstop")) {
t = 0;
}
else if(argis("-somnoshow")) {
noshow = true;
}
else if(argis("-somfinish")) {
while(!finished()) {
kohonen::step();
if(t % 128 == 0) progress("Steps left: " + its(t));
}
}
// #5 save data, classify etc.
else if(argis("-somsave")) {
PHASE(3);
shift(); kohonen::ksave(args());
}
else if(argis("-somsavew")) {
PHASE(3);
shift(); kohonen::ksavew(args());
}
else if(argis("-somloadw")) {
PHASE(3);
shift(); kohonen::kloadw(args());
}
else if(argis("-somclassify0")) {
PHASE(3);
shift(); kohonen::do_classify();
}
2017-09-01 20:14:02 +00:00
else if(argis("-somclassify")) {
PHASE(3);
shift(); kohonen::kclassify(args());
}
else if(argis("-somclassify-sr")) {
PHASE(3);
shift(); kohonen::kclassify_save_raw(args());
}
else if(argis("-somclassify-lr")) {
PHASE(3);
shift(); kohonen::kclassify_load_raw(args());
}
2017-09-01 20:14:02 +00:00
else if(argis("-somlistshown")) {
PHASE(3);
shift(); kohonen::klistsamples(args(), false, false);
}
else if(argis("-somlistbest")) {
PHASE(3);
shift(); kohonen::klistsamples(args(), true, false);
}
else if(argis("-somlistbestc")) {
PHASE(3);
shift(); kohonen::klistsamples(args(), true, true);
}
else if(argis("-somndist")) {
PHASE(3);
shift(); kohonen::neurondisttable(args());
}
else if(argis("-somshowbest")) {
showbestsamples();
}
else if(argis("-somverify")) {
start_game();
verify_crawlers();
}
else if(argis("-somrestrict")) {
shift(); kohrestrict = argi();
}
else if(argis("-som-maxgroup")) {
shift(); max_group = argi();
}
else if(argis("-som-mingroup")) {
shift(); min_group = argi();
}
else if(argis("-som-fillgroups")) {
fillgroups();
}
else if(argis("-som-load-edges")) {
shift(); string edgename = args();
shift(); kohonen::load_edges(args(), edgename, 0);
}
else if(argis("-som-random-edges")) {
shift();
random_edges(argi());
}
else if(argis("-som-load-n-edges")) {
shift(); string edgename = args();
shift(); int n = argi();
shift(); kohonen::load_edges(args(), edgename, n);
}
else if(argis("-less-edges")) {
shift(); double d = argf();
for(auto t: edgetypes) t->visible_from *= d;
}
else if(argis("-som-save-compressed")) {
shift();
save_compressed(args());
}
else if(argis("-som-load-compressed")) {
shift();
load_compressed(args());
}
2017-09-01 20:14:02 +00:00
else return 1;
return 0;
}
2017-12-01 23:27:16 +00:00
auto hooks = addHook(hooks_args, 100, readArgs);
#endif
2018-07-09 18:09:56 +00:00
auto hooks2 = addHook(hooks_frame, 50, levelline::draw)
+ addHook(hooks_mouseover, 100, describe_cell);
void clear() {
printf("clearing Kohonen...\n");
data.clear();
sample_vdata_id.clear();
colnames.clear();
weights.clear();
net.clear();
whowon.clear();
samples_to_show.clear();
scc.clear();
bdiffs.clear();
bids.clear();
bdiffn.clear();
}
}}
namespace rogueviz {
void mark(cell *c) {
using namespace kohonen;
if(kind == kKohonen && inited >= 1) {
distfrom = getNeuronSlow(c);
coloring();
}
}}
2017-09-01 20:14:02 +00:00