mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2024-12-27 18:40:35 +00:00
298 lines
7.9 KiB
C++
298 lines
7.9 KiB
C++
|
// RogueViz -- SAG embedder: some experiments
|
||
|
// Copyright (C) 2011-24 Zeno Rogue, see 'hyper.cpp' for details
|
||
|
|
||
|
#include "../rogueviz.h"
|
||
|
|
||
|
namespace rogueviz {
|
||
|
namespace sag {
|
||
|
|
||
|
int recover_from;
|
||
|
|
||
|
vector<pair<dhrg::logistic, ld>> results;
|
||
|
|
||
|
ld bestcost;
|
||
|
|
||
|
int logid;
|
||
|
int lastmethod = 0;
|
||
|
int mul_used;
|
||
|
|
||
|
bool optimized_embedding(int mul, ld bonus = 0) {
|
||
|
if(logid < recover_from) { println(hlog, "skipped ", logid++, " due to recover"); return false; }
|
||
|
println(hlog, "starting, logid = ", logid, " recover_from = ", recover_from, " R = ", best.R+bonus, " T = ", best.T);
|
||
|
int DN = isize(sagid);
|
||
|
mul_used = mul;
|
||
|
lgsag_pre = best;
|
||
|
lgsag_pre.R += bonus;
|
||
|
lgsag = lgsag_pre;
|
||
|
compute_loglik_tab(); compute_cost();
|
||
|
dofullsa_iterations(mul * DN);
|
||
|
optimize_sag_loglik_logistic();
|
||
|
hlog.flush();
|
||
|
while(true) {
|
||
|
int ch = hillclimb();
|
||
|
println(hlog, "changes = ", ch, " cost = ", cost, " R=", lgsag.R, " T=", lgsag.T);
|
||
|
if(!ch) break;
|
||
|
optimize_sag_loglik_logistic();
|
||
|
hlog.flush();
|
||
|
}
|
||
|
bool new_best = cost < bestcost;
|
||
|
if(new_best) best = lgsag, bestcost = cost;
|
||
|
sag::output_stats();
|
||
|
results.emplace_back(lgsag, cost);
|
||
|
return new_best;
|
||
|
}
|
||
|
|
||
|
void sag_new_experiment() {
|
||
|
view_each = 999999;
|
||
|
println(hlog, "SAG new experiment started");
|
||
|
int DN = isize(sagid);
|
||
|
println(hlog, "N = ", DN);
|
||
|
hlog.flush();
|
||
|
twoway = true; allow_doubles = true;
|
||
|
|
||
|
method = smLogistic;
|
||
|
if(recover_from) lgsag = best;
|
||
|
if(!recover_from) lgsag.R = max_sag_dist;
|
||
|
if(!recover_from) lgsag.T = 1;
|
||
|
compute_loglik_tab();
|
||
|
compute_cost();
|
||
|
best = lgsag; bestcost = HUGE_VAL;
|
||
|
|
||
|
for(int i=10; i<=1; i--)
|
||
|
optimized_embedding(15000, i);
|
||
|
for(int i=1; i<=10; i++)
|
||
|
optimized_embedding(15000);
|
||
|
for(int i=1; i<=10; i++)
|
||
|
optimized_embedding(15000, -i);
|
||
|
|
||
|
optimized_embedding(24000);
|
||
|
optimized_embedding(32000);
|
||
|
optimized_embedding(40000);
|
||
|
optimized_embedding(48000);
|
||
|
optimized_embedding(60000);
|
||
|
optimized_embedding(80000);
|
||
|
optimized_embedding(100000);
|
||
|
optimized_embedding(120000);
|
||
|
optimized_embedding(120000);
|
||
|
optimized_embedding(120000);
|
||
|
}
|
||
|
|
||
|
void sag_v5() {
|
||
|
println(hlog, "SAG v5 started");
|
||
|
int DN = isize(sagid);
|
||
|
println(hlog, "N = ", DN);
|
||
|
recost_each = DN; autofix_rt = 2;
|
||
|
hlog.flush();
|
||
|
twoway = true; allow_doubles = true;
|
||
|
|
||
|
method = smLogistic;
|
||
|
lgsag.R = max_sag_dist;
|
||
|
lgsag.T = 1;
|
||
|
compute_loglik_tab();
|
||
|
compute_cost();
|
||
|
best = lgsag; bestcost = HUGE_VAL;
|
||
|
|
||
|
for(int i=0; i<30; i++) optimized_embedding(10000);
|
||
|
}
|
||
|
|
||
|
void sag_v6() {
|
||
|
println(hlog, "SAG v6 started");
|
||
|
int DN = isize(sagid);
|
||
|
println(hlog, "N = ", DN);
|
||
|
recost_each = DN; autofix_rt = 2;
|
||
|
hlog.flush();
|
||
|
twoway = true; allow_doubles = true;
|
||
|
|
||
|
method = smLogistic;
|
||
|
lgsag.R = max_sag_dist;
|
||
|
lgsag.T = 1;
|
||
|
compute_loglik_tab();
|
||
|
compute_cost();
|
||
|
best = lgsag; bestcost = HUGE_VAL;
|
||
|
|
||
|
for(int i=0; i<30; i++) optimized_embedding(100000);
|
||
|
|
||
|
autofix_rt = 1;
|
||
|
for(int i=0; i<30; i++) optimized_embedding(100000);
|
||
|
|
||
|
autofix_rt = 0;
|
||
|
for(int i=0; i<30; i++) optimized_embedding(100000);
|
||
|
}
|
||
|
|
||
|
void sag_test_mul() {
|
||
|
allow_doubles = true; twoway = true;
|
||
|
int DN = isize(sagid);
|
||
|
// lgsag.R=9.19925; lgsag.T=0.587723;
|
||
|
method = smLogistic;
|
||
|
lgsag.R = max_sag_dist;
|
||
|
lgsag.T = 1;
|
||
|
compute_loglik_tab();
|
||
|
compute_cost();
|
||
|
best = lgsag; bestcost = 999999;
|
||
|
recost_each = DN; autofix_rt = 2;
|
||
|
output_fullsa = false;
|
||
|
|
||
|
println(hlog, "sag_test_mul started");
|
||
|
|
||
|
if(1) for(int mul=25;; mul *= 2) for(int af: {3, 2, 1, 0}) {
|
||
|
autofix_rt = af;
|
||
|
ld tcost = 0;
|
||
|
ld tcost2 = 0;
|
||
|
int qty = 100;
|
||
|
vector<ld> costs;
|
||
|
// println(hlog, "R=", best.R, " T=", best.T);
|
||
|
for(int i=0; i<qty; i++) {
|
||
|
println(hlog, tie(mul, af, i));
|
||
|
lgsag = best; compute_loglik_tab(); compute_cost();
|
||
|
sag::dofullsa_iterations(mul * DN);
|
||
|
sag::optimize_sag_loglik_logistic();
|
||
|
checkmark_cost = HUGE_VAL;
|
||
|
while(sag::checkmark_hillclimb()) sag::optimize_sag_loglik_logistic();
|
||
|
tcost += cost;
|
||
|
tcost2 += cost * cost;
|
||
|
costs.push_back(cost);
|
||
|
bool new_best = cost < bestcost;
|
||
|
if(new_best) best = lgsag, bestcost = cost;
|
||
|
// println(hlog, "CSV;", mul, ";", af, ";", i, ";", cost);
|
||
|
}
|
||
|
sort(costs.begin(), costs.end());
|
||
|
println(hlog, "mul=", mul, " AF=", autofix_rt, " ECost=", tcost/qty, " sigma Cost = ", sqrt(tcost2/qty - tcost*tcost/qty/qty), " : ", costs);
|
||
|
}
|
||
|
|
||
|
auto tpair = [&] (int lt, int ht) {
|
||
|
ld tcost = 0;
|
||
|
|
||
|
for(int i=0; i<20; i++) {
|
||
|
|
||
|
sagnode.clear();
|
||
|
sagnode.resize(isize(sagcells), -1);
|
||
|
for(int i=0; i<DN; i++) sagid[i] = i;
|
||
|
for(int i=0; i<DN; i++) sagnode[i] = i;
|
||
|
compute_cost();
|
||
|
|
||
|
lowtemp = 20;
|
||
|
hightemp = 20;
|
||
|
sag::dofullsa_iterations(20 * DN);
|
||
|
|
||
|
lowtemp = lt;
|
||
|
hightemp = ht;
|
||
|
sag::dofullsa_iterations(1000 * DN);
|
||
|
tcost += cost;
|
||
|
}
|
||
|
println(hlog, "lt=", lt, " ht=", ht, " tcost=", tcost);
|
||
|
};
|
||
|
|
||
|
if(false)
|
||
|
for(int lt: {-3, -5, -10, -15, -20, -25})
|
||
|
for(int ht: {-2, -1, 0, 1, 2, 5, 10})
|
||
|
tpair(lt, ht);
|
||
|
}
|
||
|
|
||
|
void write_colors(string s) {
|
||
|
auto_orth(true);
|
||
|
if(s == "-") return;
|
||
|
fhstream f(s, "wt");
|
||
|
for(int i=0; i<isize(vdata); i++) {
|
||
|
println(f, vdata[i].name, ",", format("%8x", vdata[i].cp.color1));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void sag_new_experiment_viz() {
|
||
|
view_each = 999999;
|
||
|
println(hlog, "SAG new experiment started");
|
||
|
int DN = isize(sagid);
|
||
|
println(hlog, "N = ", DN);
|
||
|
hlog.flush();
|
||
|
twoway = true; allow_doubles = true;
|
||
|
|
||
|
method = smLogistic;
|
||
|
lgsag.R = max_sag_dist;
|
||
|
lgsag.T = 1;
|
||
|
compute_loglik_tab();
|
||
|
compute_cost();
|
||
|
best = lgsag; bestcost = HUGE_VAL;
|
||
|
|
||
|
optimized_embedding(15000, 0);
|
||
|
optimized_embedding(15000, 0);
|
||
|
}
|
||
|
|
||
|
bool report_tempi = false;
|
||
|
string auto_save;
|
||
|
|
||
|
void output_stats() {
|
||
|
if(auto_save != "" && cost < best_cost) {
|
||
|
println(hlog, "cost ", cost, " beats ", best_cost);
|
||
|
best_cost = cost;
|
||
|
sag::save_sag_solution(auto_save);
|
||
|
}
|
||
|
println(hlog, "solution: ", sagid);
|
||
|
int DN = isize(sagid);
|
||
|
auto [mAP, MeanRank] = compute_mAP();
|
||
|
dhrg::iddata routing_result;
|
||
|
if(!known_pairs) { known_pairs = true; dhrg::prepare_pairs(DN, [] (int i) { return edges_yes[i]; }); }
|
||
|
dhrg::greedy_routing(routing_result, [] (int i, int j) { return sagdist[sagid[i]][sagid[j]]; });
|
||
|
print(hlog, "CSV;", logid++, ";", isize(sagnode), ";", DN, ";", isize(sagedges), ";", lgsag_pre.R, ";", lgsag_pre.T, ";", lgsag.R, ";", lgsag.T, ";", cost, ";", mAP, ";", MeanRank, ";", routing_result.suc / routing_result.tot, ";", routing_result.routedist / routing_result.bestdist);
|
||
|
if(lastmethod) print(hlog, ";", lastmethod);
|
||
|
if(mul_used) print(hlog, ";", mul_used);
|
||
|
if(report_tempi) print(hlog, ";", hightemp,";",lowtemp,";",format("%lld", numiter));
|
||
|
println(hlog);
|
||
|
}
|
||
|
|
||
|
int exp_read_args() {
|
||
|
#if CAP_COMMANDLINE
|
||
|
using namespace arg;
|
||
|
|
||
|
if(0) ;
|
||
|
|
||
|
else if(argis("-sag-new")) sag_new_experiment();
|
||
|
else if(argis("-sag-v5")) sag_v5();
|
||
|
else if(argis("-sag-v6")) sag_v6();
|
||
|
else if(argis("-sag-new-viz")) sag_new_experiment_viz();
|
||
|
else if(argis("-sag-test-mul")) sag_test_mul();
|
||
|
else if(argis("-sag-write-colors")) {
|
||
|
shift(); write_colors(args());
|
||
|
}
|
||
|
|
||
|
else if(argis("-sag-recover")) {
|
||
|
shift(); best.R = argf();
|
||
|
shift(); best.T = argf();
|
||
|
shift(); bestcost = argf();
|
||
|
shift(); recover_from = argi();
|
||
|
println(hlog, "set recover_from to ", recover_from);
|
||
|
// 58.6509;7.08961;26492.1
|
||
|
}
|
||
|
|
||
|
else if(argis("-sag-load-solution")) {
|
||
|
PHASE(3); shift(); sag::load_sag_solution_basic(args());
|
||
|
method = smLogistic;
|
||
|
lgsag.R = max_sag_dist;
|
||
|
lgsag.T = 1;
|
||
|
opt_debug = true;
|
||
|
twoway = true; allow_doubles = true;
|
||
|
optimize_sag_loglik_auto();
|
||
|
}
|
||
|
|
||
|
else if(argis("-sagstats-logid")) {
|
||
|
shift(); logid = argi();
|
||
|
}
|
||
|
else if(argis("-sag0")) {
|
||
|
sag::report_tempi = true;
|
||
|
numiter = 0;
|
||
|
}
|
||
|
else if(argis("-sagsave-auto")) {
|
||
|
PHASE(3); shift(); auto_save = args();
|
||
|
}
|
||
|
else if(argis("-sagstats")) {
|
||
|
output_stats();
|
||
|
}
|
||
|
|
||
|
else return 1;
|
||
|
#endif
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int ahexp = addHook(hooks_args, 100, exp_read_args);
|
||
|
|
||
|
}
|
||
|
}
|