1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2024-10-31 19:36:16 +00:00
hyperrogue/rogueviz/heatx.cpp

230 lines
7.4 KiB
C++
Raw Normal View History

2021-03-31 18:11:27 +00:00
#include "rogueviz.h"
#include <unordered_map>
// heat equation simulation
// https://twitter.com/ZenoRogue/status/1208409387733307392
// run with e.g.
// -geo 1 -canvas 0 -smart 1 -smartlimit 999999 -heatx
// -tes tessellations/sample/marjorie-rice.tes heat_scale=0.02 -canvas 0 -smart 1 -smartlimit 999999 -heatx
namespace hr {
namespace heatx {
const int NOT_STARTED = 999999;
const int OFF = 999998;
int last_steps = NOT_STARTED;
std::unordered_map<cell*, double> m1, m2, m3;
ld delta = 0.01;
int mode = 1;
int qsteps = 2000;
ld frac_per_frame = .001;
ld frac;
ld scale = 0.04;
int simulation_range = 20000;
2021-03-31 18:11:27 +00:00
void advance_heat_wave() {
if(euclid && GDIM == 2)
pconf.scale = scale / max(frac, .15);
int steps = mode == 2 ? (frac * qsteps) : (frac * frac * qsteps);
if(steps != last_steps || mode == 3) {
celllister cl(cwt.at, 999999, simulation_range, nullptr);
2021-03-31 18:11:27 +00:00
if(steps < last_steps) {
last_steps = 0;
m1.clear();
m2.clear();
for(cell *c: cl.lst) m1[c] = 0;
m2 = m1;
m1[cwt.at] = 1;
}
while(last_steps < steps) {
switch(mode) {
case 0:
// heat: average of adjacent
for(cell *c: cl.lst) {
ld v = m1[c];
forCellEx(c2, c) {
if(m1.count(c2)) v += m1[c2]; else v += m1[c];
}
v /= (1 + c->type);
m2[c] = v;
}
swap(m1, m2);
break;
case 1:
// heat: transfer to adjacent
for(auto& p: m2) p.second = 0;
for(cell *c: cl.lst) {
ld v = m1[c] / (1 + c->type);
m2[c] += v;
forCellEx(c2, c) {
if(m1.count(c2)) m2[c2] += v; else m2[c] += v;
}
}
swap(m1, m2);
break;
case 2:
// wave
for(cell *c: cl.lst) {
m3[c] = 0;
forCellEx(c2, c) {
if(m1.count(c2)) m3[c] += (m1[c2] - m1[c]);
}
}
for(cell *c: cl.lst) {
m1[c] += m2[c] * delta + m3[c] * delta * delta / 2;
m2[c] += m3[c] * delta;
}
break;
}
last_steps++;
}
if(mode == 3) {
ld fsteps = qsteps * frac;
for(cell *c: cl.lst) {
ld d = hdist0(tC0(ggmatrix(c)));
m1[c] = m2[c] = m3[c] = exp(-d*d/(fsteps+1e-3));
}
}
2021-03-31 18:11:27 +00:00
ld maxv = 0;
for(auto p: m1) maxv = max(maxv, abs(p.second));
for(cell *c: cl.lst) {
ld x = m1[c] / maxv;
if(mode == 2) {
if(x < 0) c->landparam = gradient(0x001010, 0x1010FF, -1, x, 0);
else c->landparam = gradient(0x1010FF, 0xFFFFFF, 0, x, 1);
}
else {
if(x < 1/2.) c->landparam = gradient(0x001010, 0xFF1010, 0, x, 1/2.);
else c->landparam = gradient(0xFF1010, 0xFFFF10, 1/2., x, 1.);
if(x > .2 && x < .3) c->landparam |= 0x4040;
}
}
}
// return false;
}
void show() {
cmode = sm::SIDE | sm::MAYDARK;
2022-07-05 14:03:12 +00:00
gamescreen();
dialog::init(XLAT("heat transfer simulation"), 0xFFFFFFFF, 150, 0);
add_edit(delta);
add_edit(qsteps);
add_edit(frac_per_frame);
add_edit(scale);
add_edit(simulation_range);
dialog::addBack();
dialog::display();
}
2021-03-31 18:11:27 +00:00
void enable() {
using rogueviz::rv_hook;
rv_hook(hooks_frame, 100, advance_heat_wave);
rv_hook(anims::hooks_anim, 100, [] {
if(inHighQual) {
frac = std::fmod(ticks, anims::period) * 1. / anims::period;
}
else {
frac += frac_per_frame;
if(frac > 1) frac--;
}
});
rv_hook(shot::hooks_take, 100, [] {
advance_heat_wave(); calcparam(); models::configure();
});
rv_hook(hooks_drawcell, 100, [] (cell *c, const shiftmatrix& V) {
if(WDIM == 3)
queuepoly(face_the_player(V), cgi.shRing, darkena(c->landparam_color, 0, 0xFF));
return false;
});
rv_hook(hooks_o_key, 80, [] (o_funcs& v) { v.push_back(named_dialog("heat", show)); });
rv_hook(hooks_post_initgame, 100, [] { last_steps = NOT_STARTED; frac = 0; });
2021-03-31 18:11:27 +00:00
rogueviz::cleanup.push_back([] { m1.clear(); m2.clear(); m3.clear(); last_steps = OFF; });
last_steps = NOT_STARTED; frac = 0;
}
string cap = "heat transfer/";
void heat_slide(vector<tour::slide>& v, string title, string desc, reaction_t t) {
using namespace tour;
v.push_back(
tour::slide{cap + title, 18, LEGAL::NONE | QUICKGEO, desc,
[t] (presmode mode) {
setCanvas(mode, '0');
slide_backup(vid.use_smart_range, 2);
slide_backup(vid.smart_range_detail, 1);
slide_backup(vid.cells_drawn_limit, 100000);
slide_backup(vid.cells_generated_limit, 10000);
if(mode == pmStart) {
t();
start_game();
enable();
}
}}
);
}
2021-03-31 18:11:27 +00:00
auto heathook = arg::add3("-heatx", enable)
+ addHook(hooks_configfile, 100, [] {
param_f(delta, "heat_delta")
->editable(0, 1, 0.01, "delta", "how fast is the heat transfer", 't');
param_i(qsteps, "heat_qsteps")
->editable(0, 10000, 100, "steps to simulate", "", 's');
param_f(frac_per_frame, "heat_pf")
->editable(0, 0.01, 0.0001, "speed", "speed of simulation: fraction per frame", 'v');
param_f(scale, "heat_scale")
->editable(0, 1, 0.001, "scale", "scaling factor", 'f');
param_i(simulation_range, "heat_range")
->editable(0, 100000, 1000, "heat simulation range", "number of cells to consider", 'r');
param_i(mode, "heat_mode");
})
+ addHook_rvslides(180, [] (string s, vector<tour::slide>& v) {
if(s != "mixed") return;
heat_slide(v, "squares",
"A simple heat simulation. In each turn, the temperature changes towards the average of temperatures of adjacent cells.\n\n"
"Here we do this simulation on a square grid. Note that, despite the natural taxicab metric, spread heats in perfect circles.",
[] {
set_geometry(gEuclidSquare); set_variation(eVariation::pure);
});
heat_slide(v, "Marjorie Rice tiling", "Heat simulation on a tiling discovered by Marjorie Rice. Despite the more complex tiling, the heat spreads in perfect circles!", [] {
arb::run("tessellations/sample/marjorie-rice.tes");
tour::slide_backup(scale, 0.02);
});
heat_slide(v, "elongated triangular", "It is not always perfect circles -- in a periodic tessellation, it could also be ellipses. Here the ellipses are very close to perfect circles.", [] {
set_variation(eVariation::pure);
set_geometry(gArchimedean);
arcm::current.parse("(4,4,3L,3L,3L) [3,4]");
});
heat_slide(v, "kite-and-dart tiling", "But even in the kite-and-dart tiling we seem to get perfect circles.", [] {
set_geometry(gKiteDart2);
});
heat_slide(v, "hyperbolic tiling",
"We used Euclidean tessellations so far. In each Euclidean tessellation, the tessellations behaved in roughly the same, Euclidean way.\n\n"
"In hyperbolic geometry it is different -- not only it is less circular, but the radius of the hot area (at least 30% of the heat of the central tile) will not grow to infinity!", [] {
set_geometry(gNormal);
gp::param.first = 4;
gp::param.second = 0;
set_variation(eVariation::goldberg);
});
});
2021-03-31 18:11:27 +00:00
}
}