hyperrogue/crystal.cpp

461 lines
11 KiB
C++
Raw Normal View History

// Hyperbolic Rogue
// This file implements the multi-dimensional (aka crystal) geometries.
// Copyright (C) 2011-2018 Zeno Rogue, see 'hyper.cpp' for details
namespace hr {
namespace crystal {
bool add_bitruncation = false;
bool view_coordinates = false;
const int MAXDIM = 7;
typedef array<int, MAXDIM> coord;
static const coord c0 = {};
int tocode(int cname) { return (1 << (cname >> 1)); }
void resize2(vector<vector<int>>& v, int a, int b, int z) {
v.clear();
v.resize(a);
for(auto& w: v) w.resize(b, z);
}
const int FULLSTEP = 16;
const int HALFSTEP = 8;
struct crystal_structure {
int dir;
int dim;
vector<vector<int>> cmap;
vector<vector<int>> next;
vector<vector<int>> prev;
vector<vector<int>> order;
void coord_to_next() {
resize2(next, 1<<dim, 2*dim, -1);
for(int a=0; a<(1<<dim); a++)
for(int b=0; b<dir; b++)
next[a][cmap[a][b]] = cmap[a][(b+1)%dir];
println(hlog, next);
}
void next_to_coord() {
resize2(cmap, 1<<dim, dir, -1);
for(int a=0; a<(1<<dim); a++) {
int at = 0;
for(int b=0; b<dir; b++) {
cmap[a][b] = at;
at = next[a][at];
}
}
println(hlog, "coordinate map is:\n", cmap);
}
void next_to_prev() {
resize2(prev, 1<<dim, 2*dim, -1);
for(int a=0; a<(1<<dim); a++)
for(int b=0; b<dir; b++) {
if(next[a][b] != -1)
prev[a][next[a][b]] = b;
}
}
void coord_to_order() {
println(hlog, dir, dim);
resize2(order, 1<<dim, 2*dim, -1);
for(int a=0; a<(1<<dim); a++)
for(int b=0; b<dir; b++)
order[a][cmap[a][b]] = b;
println(hlog, order);
}
int count_bugs() {
int bugcount = 0;
for(int a=0; a<(1<<dim); a++)
for(int b=0; b<2*dim; b++) {
if(next[a][b] == -1) continue;
int qa = a, qb = b;
for(int i=0; i<4; i++) {
if(i == 2 && (qb != (b^1))) bugcount++;
qa ^= tocode(qb);
qb ^= 1;
qb = next[qa][qb];
}
if(a != qa || b != qb) bugcount++;
}
return bugcount;
}
void next_insert(int a, int at, int val) {
int pd = next[a].size();
next[a].resize(pd + 2);
next[a][val] = next[a][at];
next[a][at] = val;
next[a][val^1] = next[a][at^1];
next[a][at^1] = val^1;
prev[a].resize(pd + 2);
prev[a][val] = at;
prev[a][next[a][val]] = val;
prev[a][val^1] = at^1;
prev[a][next[a][val^1]] = val^1;
}
void prev_insert(int a, int at, int val) {
next_insert(a, prev[a][at], val);
}
int errors = 0;
bool may_next_insert(int a, int at, int val) {
if(isize(next[a]) != dir) {
next_insert(a, at, val);
return true;
}
else if(next[a][at] != val) errors++;
return false;
}
bool may_prev_insert(int a, int at, int val) {
if(isize(prev[a]) != dir) {
prev_insert(a, at, val);
return true;
}
else if(prev[a][at] != val) errors++;
return false;
}
void add_dimension_to(crystal_structure& poor) {
dir = poor.dir + 2;
dim = poor.dim + 1;
printf("Building dimension %d\n", dim);
next.resize(1<<dim);
prev.resize(1<<dim);
int mask = (1<<poor.dim) - 1;
int mm = tocode(poor.dir);
for(int i=0; i<(1<<dim); i++) {
if(i < mm)
next[i] = poor.next[i&mask], prev[i] = poor.prev[i&mask];
else
next[i] = poor.prev[i&mask], prev[i] = poor.next[i&mask];
}
next_insert(0, 0, poor.dir);
for(int s=2; s<1<<(dim-2); s+=2) {
if(next[s][0] < 4)
prev_insert(s, 0, poor.dir);
else
next_insert(s, 0, poor.dir);
}
// printf("next[%d][%d] = %d\n", 4, 2, next[4][2]);
for(int s=0; s<8; s++) for(int a=0; a<(1<<dim); a++) if(isize(next[a]) > poor.dir) {
int which = next[a][poor.dir];
int a1 = a ^ tocode(which);
may_next_insert(a1, which^1, poor.dir);
may_next_insert(a ^ mm, which, poor.dir^1);
which = prev[a][poor.dir];
a1 = a ^ tocode(which);
may_prev_insert(a1, which^1, poor.dir);
}
// println(hlog, next);
if(errors) { printf("errors: %d\n", errors); exit(1);; }
int unf = 0;
for(int a=0; a<(1<<dim); a++) if(isize(next[a]) == poor.dir) {
if(!unf) printf("unf: ");
printf("%d ", a);
unf ++;
}
if(unf) { printf("\n"); exit(2); }
for(int a=0; a<(1<<dim); a++) for(int b=0; b<dir; b++)
if(prev[a][next[a][b]] != b) {
println(hlog, next[a], prev[a]);
printf("next/prev %d\n", a);
exit(3);
}
if(count_bugs()) {
printf("bugs reported: %d\n", count_bugs());
exit(4);
}
}
void remove_half_dimension() {
dir--;
for(int i=0; i<(1<<dim); i++) {
int take_what = dir;
if(i >= (1<<(dim-1))) take_what = dir-1;
next[i][prev[i][take_what]] = next[i][take_what],
prev[i][next[i][take_what]] = prev[i][take_what],
next[i].resize(dir),
prev[i].resize(dir);
}
}
void build() {
dir = 4;
dim = 2;
next.resize(4, {2,3,1,0});
next_to_prev();
while(dir < S7) {
crystal_structure csx = move(*this);
add_dimension_to(csx);
}
if(dir > S7) remove_half_dimension();
next_to_coord();
coord_to_order();
coord_to_next();
if(count_bugs()) {
printf("bugs found\n");
}
if(dir > MAX_EDGE || dim > MAXDIM) {
printf("Dimension or directions exceeded -- I have generated it, but won't play");
exit(0);
}
}
};
struct lwalker {
crystal_structure cs;
int id;
int spin;
};
lwalker operator +(lwalker a, int v) { a.spin = gmod(a.spin + v, a.cs.dir); return a; }
lwalker operator +(lwalker a, wstep_t) {
a.spin = a.cs.cmap[a.id][a.spin];
a.id ^= tocode(a.spin);
a.spin = a.cs.order[a.id][a.spin^1];
return a;
}
coord add(coord c, lwalker a, int val) {
int code = a.cs.cmap[a.id][a.spin];
c[code>>1] += (code&1) ? val : -val;
return c;
}
map<heptagon*, coord> hcoords;
map<coord, heptagon*> heptagon_at;
crystal_structure cs;
coord add(coord c, int cname, int val) {
int dim = (cname>>1);
c[dim] = (c[dim] + (cname&1?val:-val));
return c;
}
lwalker makewalker(crystal_structure& cs, coord c, int d) {
lwalker a;
a.cs = cs;
a.id = 0;
for(int i=0; i<cs.dim; i++) if(c[i] & FULLSTEP) a.id += (1<<i);
a.spin = d;
return a;
}
void crystalstep(heptagon *h, int d);
heptagon *get_heptagon_at(coord c, int deg) {
if(heptagon_at.count(c)) return heptagon_at[c];
heptagon*& h = heptagon_at[c];
h = tailored_alloc<heptagon> (deg);
h->alt = NULL;
h->cdata = NULL;
h->c7 = newCell(deg, h);
h->distance = 0;
for(int i=0; i<cs.dim; i++) h->distance += abs(c[i]);
hcoords[h] = c;
// for(int i=0; i<6; i++) crystalstep(h, i);
return h;
}
coord get_coord(cell *c) {
if(c->master->c7 != c) {
coord res = c0;
for(int i=0; i<c->type; i+=2) {
coord co = hcoords[c->move(i)->master];
for(int d=0; d<cs.dim; d++) res[d] += co[d];
}
for(int d=0; d<cs.dim; d++) res[d] = (2 * res[d] + c->type/2) / c->type;
return res;
}
else
return hcoords[c->master];
}
struct hrmap_crystal : hrmap {
heptagon *getOrigin() { return get_heptagon_at(c0, S7); }
hrmap_crystal() {
cs.build();
}
void verify() { }
};
hrmap *new_map() {
return new hrmap_crystal;
}
bool is_bi(coord co) {
for(int i=0; i<cs.dim; i++) if(co[i] & HALFSTEP) return true;
return false;
}
void create_step(heptagon *h, int d) {
if(geometry != gCrystal) return;
if(!hcoords.count(h)) {
printf("not found\n");
return;
}
auto co = hcoords[h];
if(is_bi(co)) {
heptspin hs(h, d);
(hs + 1 + wstep + 1).cpeek();
return;
}
auto lw = makewalker(cs, co, d);
if(!add_bitruncation) {
auto c1 = add(co, lw, FULLSTEP);
auto lw1 = lw+wstep;
h->c.connect(d, heptspin(get_heptagon_at(c1, S7), lw1.spin));
}
else {
auto coc = add(add(co, lw, HALFSTEP), lw+1, HALFSTEP);
auto hc = get_heptagon_at(coc, HALFSTEP);
for(int a=0; a<8; a+=2) {
hc->c.connect(a, heptspin(h, lw.spin));
if(h->modmove(lw.spin-1)) {
hc->c.connect(a+1, heptspin(h, lw.spin) - 1 + wstep - 1);
}
co = add(co, lw, FULLSTEP);
lw = lw + wstep + (-1);
h = get_heptagon_at(co, S7);
}
}
}
array<array<int,2>, MAX_EDGE> distlimit_table = {{
{SEE_ALL,SEE_ALL}, {SEE_ALL,SEE_ALL}, {SEE_ALL,SEE_ALL}, {SEE_ALL,SEE_ALL}, {15, 10},
{6, 4}, {5, 3}, {4, 3}, {4, 3}, {3, 2}, {3, 2}, {3, 2}, {3, 2}, {3, 2}
}};
int readArgs() {
using namespace arg;
if(0) ;
else if(argis("-crystal")) {
stop_game();
geometry = gCrystal; variation = eVariation::pure;
shift(); int N = argi();
ginf[gCrystal].sides = N;
ginf[gCrystal].vertex = 4;
if(N < MAX_EDGE)
ginf[gCrystal].distlimit = distlimit_table[N];
add_bitruncation = false;
}
else if(argis("-crystalb")) {
stop_game();
geometry = gCrystal; variation = eVariation::bitruncated;
ginf[gCrystal].sides = 8;
ginf[gCrystal].vertex = 3;
ginf[gCrystal].distlimit = {7, 5};
add_bitruncation = true;
}
else if(argis("-cview")) {
view_coordinates = true;
}
else return 1;
return 0;
}
color_t colorize(cell *c) {
coord co = get_coord(c);
color_t res;
res = 0;
for(int i=0; i<3; i++)
res |= ((i == 2 && S7 == 5) ? (co[i] ? 255 : 0) : (128 + co[i] * 3)) << (8*i);
return res;
}
bool crystal_cell(cell *c, transmatrix V) {
if(geometry != gCrystal) return false;
if(view_coordinates && cheater) for(int i=0; i<S7; i++) {
if(c->master->c7 == c) {
transmatrix V1 = cellrelmatrix(c, i);
ld dist = hdist0(V1 * C0);
ld alpha = -atan2(V1 * C0);
transmatrix T = V * spin(alpha) * xpush(dist*.3);
auto co = hcoords[c->master];
int our_id = 0;
for(int a=0; a<MAXDIM; a++) if(co[a] & FULLSTEP) our_id += (1<<a);
int cx = cs.cmap[our_id][i];
int coordcolors[MAXDIM] = {0x4040D0, 0x40D040, 0xD04040, 0xFFD500, 0xF000F0, 0x00F0F0, 0xF0F0F0 };
queuestr(T, 0.3, its(co[cx>>1] / (add_bitruncation ? HALFSTEP : FULLSTEP)), coordcolors[cx>>1], 1);
}
if(PURE) {
cellwalker cw(c, i);
cellwalker cw2 = cw;
for(int i=0; i<(add_bitruncation?3:4); i++) cw2 = cw2 + wstep + 1;
if(cw2 != cw) { printf("crystal valence error\n"); cw.at->item = itGold; }
}
}
return false;
}
int hypot2(coord co1, coord co2) {
int result = 0;
for(int a=0; a<cs.dim; a++) result += (co1[a] - co2[a]) * (co1[a] - co2[a]);
return result;
}
int distance(cell *c1, cell *c2) {
if(true || (PURE && !add_bitruncation)) {
coord co1 = hcoords[c1->master];
coord co2 = hcoords[c2->master];
int result = 0;
for(int a=0; a<cs.dim; a++) result += abs(co1[a] - co2[a]);
return result / FULLSTEP;
}
}
auto crystalhook = addHook(hooks_args, 100, readArgs)
+ addHook(hooks_drawcell, 100, crystal_cell);
}
}