hyperrogue/heptagon.cpp

223 lines
6.3 KiB
C++
Raw Normal View History

2015-08-08 13:57:52 +00:00
// Hyperbolic Rogue
// Copyright (C) 2011-2012 Zeno Rogue, see 'hyper.cpp' for details
// heptagon here refers to underlying heptagonal tesselation
// (which you can see by changing the conditions in graph.cpp)
2017-03-23 10:53:57 +00:00
#define MIRR(x) x.mirrored
2015-08-08 13:57:52 +00:00
// automaton state
2017-03-23 10:53:57 +00:00
enum hstate { hsOrigin, hsA, hsB, hsError, hsA0, hsA1, hsB0, hsB1, hsC };
2015-08-08 13:57:52 +00:00
2017-03-23 10:53:57 +00:00
int fixrot(int a) { return (a+490)% S7; }
int fix42(int a) { return (a+420)% S42; }
2015-08-08 13:57:52 +00:00
struct heptagon;
struct cell;
cell *newCell(int type, heptagon *master);
2017-03-23 10:53:57 +00:00
// spintable functions
int tspin(uint32_t& t, int d) {
return (t >> (d<<2)) & 7;
}
int tmirror(uint32_t& t, int d) {
return (t >> ((d<<2)+3)) & 1;
}
void tsetspin(uint32_t& t, int d, int spin) {
t &= ~(15 << (d<<2));
t |= spin << (d<<2);
}
2016-08-26 09:58:03 +00:00
2015-08-08 13:57:52 +00:00
struct heptagon {
// automaton state
2017-07-04 13:38:33 +00:00
hstate s : 6;
int dm4: 2;
2015-08-08 13:57:52 +00:00
// we are spin[i]-th neighbor of move[i]
2017-03-23 10:53:57 +00:00
uint32_t spintable;
int spin(int d) { return tspin(spintable, d); }
int mirror(int d) { return tmirror(spintable, d); }
void setspin(int d, int sp) { tsetspin(spintable, d, sp); }
2015-08-08 13:57:52 +00:00
// neighbors; move[0] always goes towards origin,
// and then we go clockwise
heptagon* move[7];
// distance from the origin
short distance;
2016-01-02 10:09:13 +00:00
// emerald/wineyard generator
short emeraldval;
// fifty generator
short fiftyval;
// zebra generator (1B actually)
short zebraval;
2017-03-23 10:53:57 +00:00
// field id
int fieldval;
2016-08-26 09:58:03 +00:00
// evolution data
short rval0, rval1;
struct cdata *cdata;
2016-01-02 10:09:13 +00:00
// central cell
2015-08-08 13:57:52 +00:00
cell *c7;
// associated generator of alternate structure, for Camelot and horocycles
heptagon *alt;
2016-01-02 10:09:13 +00:00
// functions
heptagon*& modmove(int i) { return move[fixrot(i)]; }
2017-03-23 10:53:57 +00:00
unsigned char gspin(int i) { return spin(fixrot(i)); }
2015-08-08 13:57:52 +00:00
};
// the automaton is used to generate each heptagon in an unique way
// (you can see the tree obtained by changing the conditions in graph.cpp)
// from the origin we can go further in any direction, and from other heptagons
// we can go in directions 3 and 4 (0 is back to origin, so 3 and 4 go forward),
// and sometimes in direction 5
hstate transition(hstate s, int dir) {
2017-03-23 10:53:57 +00:00
if(sphere) {
if(S7 == 4) {
if(s == hsOrigin) return dir == 0 ? hsB0 : hsB1;
}
if(S7 == 3) {
if(s == hsOrigin) return hsB1;
}
if(s == hsOrigin) return dir == 0 ? hsA0 : hsA1;
if(s == hsA0 && dir == 2) return hsB0;
if(s == hsA1 && dir == 2) return hsB1;
if(s == hsB0 && dir == S7-2) return hsC;
return hsError;
}
else {
if(s == hsOrigin) return hsA;
if(s == hsA && dir >= 3 && dir <= 4) return hsA;
if(s == hsA && dir == 5) return hsB;
if(s == hsB && dir == 4) return hsB;
if(s == hsB && dir == 3) return hsA;
}
2015-08-08 13:57:52 +00:00
return hsError;
}
// create h->move[d] if not created yet
heptagon *createStep(heptagon *h, int d);
// create a new heptagon
heptagon *buildHeptagon(heptagon *parent, int d, hstate s, int pard = 0) {
heptagon *h = new heptagon;
h->alt = NULL;
h->s = s;
for(int i=0; i<7; i++) h->move[i] = NULL;
2017-03-23 10:53:57 +00:00
h->spintable = 0;
h->move[pard] = parent; tsetspin(h->spintable, pard, d);
parent->move[d] = h; tsetspin(parent->spintable, d, pard);
2015-08-08 13:57:52 +00:00
if(parent->c7) {
h->c7 = newCell(7, h);
2016-01-02 10:09:13 +00:00
h->emeraldval = emerald_heptagon(parent->emeraldval, d);
h->zebraval = zebra_heptagon(parent->zebraval, d);
2017-03-23 10:53:57 +00:00
h->fieldval = fp43.connections[fieldpattern::btspin(parent->fieldval, d)];
2016-08-26 09:58:03 +00:00
h->rval0 = h->rval1 = 0; h->cdata = NULL;
if(parent->s == hsOrigin)
2016-01-02 10:09:13 +00:00
h->fiftyval = fiftytable[0][d];
else
h->fiftyval = nextfiftyval(parent->fiftyval, parent->move[0]->fiftyval, d);
2015-08-08 13:57:52 +00:00
}
else {
h->c7 = NULL;
2016-01-02 10:09:13 +00:00
h->emeraldval = 0;
h->fiftyval = 0;
2015-08-08 13:57:52 +00:00
}
2016-01-02 10:09:13 +00:00
//generateEmeraldval(parent);
//generateEmeraldval(h);
2015-08-08 13:57:52 +00:00
if(pard == 0) {
2017-07-04 13:38:33 +00:00
h->dm4 = parent->dm4+1;
2016-08-26 09:58:03 +00:00
if(purehepta) h->distance = parent->distance + 1;
else if(parent->s == hsOrigin) h->distance = 2;
2017-03-23 10:53:57 +00:00
else if(h->spin(0) == 5)
2015-08-08 13:57:52 +00:00
h->distance = parent->distance + 1;
2017-03-23 10:53:57 +00:00
else if(h->spin(0) == 4 && h->move[0]->s == hsB)
h->distance = createStep(h->move[0], (h->spin(0)+2)%7)->distance + 3;
2015-08-08 13:57:52 +00:00
else h->distance = parent->distance + 2;
}
2017-07-04 13:38:33 +00:00
else {
h->distance = parent->distance - (purehepta?1:2);
h->dm4 = parent->dm4-1;
}
2015-08-08 13:57:52 +00:00
return h;
}
void addSpin(heptagon *h, int d, heptagon *from, int rot, int spin) {
rot = fixrot(rot);
createStep(from, rot);
h->move[d] = from->move[rot];
2017-03-23 10:53:57 +00:00
h->setspin(d, fixrot(from->spin(rot) + spin));
h->move[d]->move[fixrot(from->spin(rot) + spin)] = h;
h->move[d]->setspin(fixrot(from->spin(rot) + spin), d);
2016-01-02 10:09:13 +00:00
//generateEmeraldval(h->move[d]); generateEmeraldval(h);
2015-08-08 13:57:52 +00:00
}
2016-08-26 09:58:03 +00:00
extern int hrand(int);
2015-08-08 13:57:52 +00:00
heptagon *createStep(heptagon *h, int d) {
d = fixrot(d);
2017-03-23 10:53:57 +00:00
if(!h->move[0] && h->s != hsOrigin) {
2016-08-26 09:58:03 +00:00
buildHeptagon(h, 0, hsA, 3 + hrand(2));
2015-08-08 13:57:52 +00:00
}
if(h->move[d]) return h->move[d];
if(h->s == hsOrigin) {
buildHeptagon(h, d, hsA);
}
else if(d == 1) {
2017-03-23 10:53:57 +00:00
addSpin(h, d, h->move[0], h->spin(0)-1, -1);
2015-08-08 13:57:52 +00:00
}
else if(d == 6) {
2017-03-23 10:53:57 +00:00
addSpin(h, d, h->move[0], h->spin(0)+1, +1);
2015-08-08 13:57:52 +00:00
}
else if(d == 2) {
2017-03-23 10:53:57 +00:00
createStep(h->move[0], h->spin(0)-1);
addSpin(h, d, h->move[0]->modmove(h->spin(0)-1), 5 + h->move[0]->gspin(h->spin(0)-1), -1);
2015-08-08 13:57:52 +00:00
}
else if(d == 5 && h->s == hsB) {
2017-03-23 10:53:57 +00:00
createStep(h->move[0], h->spin(0)+1);
addSpin(h, d, h->move[0]->modmove(h->spin(0)+1), 2 + h->move[0]->gspin(h->spin(0)+1), +1);
2015-08-08 13:57:52 +00:00
}
else
buildHeptagon(h, d, (d == 5 || (h->s == hsB && d == 4)) ? hsB : hsA);
return h->move[d];
}
// a structure used to walk on the heptagonal tesselation
// (remembers not only the heptagon, but also direction)
struct heptspin {
heptagon *h;
int spin;
2017-03-23 10:53:57 +00:00
bool mirrored;
heptspin() { mirrored = false; }
2015-08-08 13:57:52 +00:00
};
heptspin hsstep(const heptspin &hs, int spin) {
createStep(hs.h, hs.spin);
heptspin res;
res.h = hs.h->move[hs.spin];
2017-03-23 10:53:57 +00:00
res.mirrored = hs.mirrored ^ hs.h->mirror(hs.spin);
res.spin = fixrot(hs.h->spin(hs.spin) + (MIRR(res)?-spin:spin));
2015-08-08 13:57:52 +00:00
return res;
}
heptspin hsspin(const heptspin &hs, int val) {
heptspin res;
res.h = hs.h;
2017-03-23 10:53:57 +00:00
res.spin = fixrot(hs.spin + (MIRR(hs)?-val:val));
res.mirrored = hs.mirrored;
2015-08-08 13:57:52 +00:00
return res;
}
// display the coordinates of the heptagon
void backtrace(heptagon *pos) {
if(pos->s == hsOrigin) return;
2015-08-08 13:57:52 +00:00
backtrace(pos->move[0]);
2017-03-23 10:53:57 +00:00
printf(" %d", pos->spin(0));
2015-08-08 13:57:52 +00:00
}
void hsshow(const heptspin& t) {
printf("ORIGIN"); backtrace(t.h); printf(" (spin %d)\n", t.spin);
}