mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2024-11-08 23:19:54 +00:00
594 lines
16 KiB
C++
594 lines
16 KiB
C++
|
#include "../hyper.h"
|
||
|
|
||
|
// This program generates the error table for Solv approxiations.
|
||
|
|
||
|
#define D3 1
|
||
|
#define D2 0
|
||
|
|
||
|
#if CAP_FIELD
|
||
|
namespace hr {
|
||
|
|
||
|
ld solerror(hyperpoint ok, hyperpoint chk) {
|
||
|
return geo_dist(chk, ok);
|
||
|
}
|
||
|
|
||
|
ld minz = -1e-9, maxz = 1e-9;
|
||
|
|
||
|
int max_iter = 999999;
|
||
|
|
||
|
bool isok;
|
||
|
|
||
|
hyperpoint iterative_solve(hyperpoint xp, hyperpoint candidate, ld minerr, bool debug = false) {
|
||
|
|
||
|
transmatrix T = Id; T[0][1] = 8; T[2][2] = 5;
|
||
|
|
||
|
auto f = [&] (hyperpoint x) { return nisot::numerical_exp(x); }; // T * x; };
|
||
|
|
||
|
auto ver = f(candidate);
|
||
|
ld err = solerror(xp, ver);
|
||
|
auto at = candidate;
|
||
|
|
||
|
ld eps = 1e-6;
|
||
|
|
||
|
hyperpoint c[6];
|
||
|
for(int a=0; a<3; a++) c[a] = point3(a==0, a==1, a==2);
|
||
|
for(int a=0; a<3; a++) c[3+a] = point3(-(a==0), -(a==1), -(a==2));
|
||
|
|
||
|
int iter = 0;
|
||
|
|
||
|
while(err > minerr) { again:
|
||
|
iter++; if(iter > max_iter) { isok = false; return at; }
|
||
|
// cands.push_back(at);
|
||
|
if(debug) println(hlog, "\n\nf(", at, "?) = ", ver, " (error ", err, ")");
|
||
|
array<hyperpoint, 3> pnear;
|
||
|
|
||
|
for(int a=0; a<3; a++) {
|
||
|
auto x = at + c[a] * eps;
|
||
|
if(debug) println(hlog, "f(", x, ") = ", f(x), " = y + ", f(x)-ver, "imp ", err - solerror(xp, f(x)) );
|
||
|
auto y = at - c[a] * eps;
|
||
|
if(debug) println(hlog, "f(", y, ") = ", f(y), " = y + ", f(y)-ver, "imp ", err - solerror(xp, f(y)) );
|
||
|
pnear[a] = (f(x) - ver) / eps; // (direct_exp(at + c[a] * eps, prec) - ver) / eps;
|
||
|
}
|
||
|
|
||
|
transmatrix U = Id;
|
||
|
for(int a=0; a<3; a++)
|
||
|
for(int b=0; b<3; b++)
|
||
|
U[a][b] = pnear[b][a];
|
||
|
|
||
|
hyperpoint diff = (xp - ver);
|
||
|
|
||
|
hyperpoint bonus = inverse(U) * diff;
|
||
|
|
||
|
ld lbonus = hypot_d(3, bonus);
|
||
|
|
||
|
if(lbonus > 0.1) bonus = bonus * 0.1 / hypot_d(3, bonus);
|
||
|
|
||
|
if(false && lbonus > 1000) {
|
||
|
int best = -1;
|
||
|
ld besti = err;
|
||
|
for(int a=0; a<6; a++) {
|
||
|
auto x = at + c[a] * eps;
|
||
|
auto nerr = solerror(xp, f(x));
|
||
|
if(nerr < besti) best = a, besti = nerr;
|
||
|
}
|
||
|
if(best == -1) {
|
||
|
println(hlog, "local best");
|
||
|
for(int a=0; a<1000000; a++) {
|
||
|
auto x = at;
|
||
|
for(int i=0; i<3; i++) x[i] += (hrand(1000000) - hrand(1000000)) * 1e-5;
|
||
|
auto nerr = solerror(xp, f(x));
|
||
|
if(nerr < besti) { println(hlog, "moved to ", x); at = x; goto again; }
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
bonus = c[best] * 1e-3;
|
||
|
}
|
||
|
|
||
|
int fixes = 0;
|
||
|
|
||
|
if(debug)
|
||
|
println(hlog, "\nU = ", U, "\ndiff = ", diff, "\nbonus = ", bonus, " of ", lbonus, "\n");
|
||
|
|
||
|
nextfix:
|
||
|
hyperpoint next = at + bonus;
|
||
|
hyperpoint nextver = f(next);
|
||
|
ld nexterr = solerror(xp, nextver);
|
||
|
if(debug) println(hlog, "f(", next, ") = ", nextver, ", imp = ", err - nexterr);
|
||
|
|
||
|
if(nexterr < err) {
|
||
|
// println(hlog, "reduced error ", err, " to ", nexterr);
|
||
|
at = next;
|
||
|
ver = nextver;
|
||
|
err = nexterr;
|
||
|
continue;
|
||
|
}
|
||
|
else {
|
||
|
bonus /= 2;
|
||
|
fixes++;
|
||
|
if(fixes > 10) {
|
||
|
if(err > 999) {
|
||
|
for(ld s = 1; abs(s) > 1e-9; s *= 0.5)
|
||
|
for(int k=0; k<27; k++) {
|
||
|
int kk = k;
|
||
|
next = at;
|
||
|
for(int i=0; i<3; i++) { if(kk%3 == 1) next[i] += s; if(kk%3 == 2) next[i] -= s; kk /= 3; }
|
||
|
// next = at + c[k] * s;
|
||
|
nextver = f(next);
|
||
|
nexterr = solerror(xp, nextver);
|
||
|
// println(hlog, "f(", next, ") = ", nextver, ", error = ", nexterr);
|
||
|
if(nexterr < err) { at = next; ver = nextver; err = nexterr; goto nextiter; }
|
||
|
}
|
||
|
println(hlog, "cannot improve error ", err);
|
||
|
exit(1);
|
||
|
}
|
||
|
if(debug) println(hlog, "fixes = ", fixes, " : break");
|
||
|
isok = false;
|
||
|
return at;
|
||
|
}
|
||
|
goto nextfix;
|
||
|
}
|
||
|
|
||
|
nextiter: ;
|
||
|
}
|
||
|
|
||
|
if(debug) println(hlog, "\n\nsolution found: f(", at, ") = ", ver, " (error ", err, ")");
|
||
|
|
||
|
isok = true;
|
||
|
|
||
|
return at;
|
||
|
}
|
||
|
|
||
|
EX void geodesic_step_euler(hyperpoint& at, hyperpoint& velocity) {
|
||
|
auto acc = nisot::christoffel(at, velocity, velocity);
|
||
|
at = at + velocity + acc / 2;
|
||
|
velocity += acc;
|
||
|
}
|
||
|
|
||
|
EX void geodesic_step_poor(hyperpoint& at, hyperpoint& velocity) {
|
||
|
auto acc = nisot::christoffel(at, velocity, velocity);
|
||
|
at = at + velocity;
|
||
|
velocity += acc;
|
||
|
}
|
||
|
|
||
|
EX void geodesic_step_midpoint(hyperpoint& at, hyperpoint& velocity) {
|
||
|
|
||
|
// y(n+1) = y(n) + f(y(n) + 1/2 f(y(n)))
|
||
|
|
||
|
auto acc = nisot::christoffel(at, velocity, velocity);
|
||
|
auto at2 = at + velocity / 2;
|
||
|
auto velocity2 = velocity + acc / 2;
|
||
|
|
||
|
auto acc2 = nisot::christoffel(at2, velocity2, velocity2);
|
||
|
|
||
|
at = at + velocity + acc2 / 2;
|
||
|
|
||
|
velocity = velocity + acc2;
|
||
|
}
|
||
|
|
||
|
auto& chr = nisot::get_acceleration;
|
||
|
|
||
|
EX bool invalid_any(const hyperpoint h) {
|
||
|
return isnan(h[0]) || isnan(h[1]) || isnan(h[2]) || isinf(h[0]) || isinf(h[1]) || isinf(h[2]) ||
|
||
|
abs(h[0]) > 1e20 || abs(h[1]) > 1e20 || abs(h[2]) > 1e20;
|
||
|
}
|
||
|
|
||
|
EX void geodesic_step_rk4(hyperpoint& at, hyperpoint& vel) {
|
||
|
auto acc1 = chr(at, vel);
|
||
|
auto acc2 = chr(at + vel/2, vel + acc1/2);
|
||
|
auto acc3 = chr(at + vel/2 + acc1/4, vel + acc2/2);
|
||
|
auto acc4 = chr(at + vel + acc2/2, vel + acc3);
|
||
|
|
||
|
at += vel + (acc1+acc2+acc3)/6;
|
||
|
vel += (acc1+2*acc2+2*acc3+acc4)/6;
|
||
|
}
|
||
|
|
||
|
template<class T>
|
||
|
hyperpoint numerical_exp(hyperpoint v, int steps, const T& gstep) {
|
||
|
hyperpoint at = point31(0, 0, 0);
|
||
|
v /= steps;
|
||
|
v[3] = 0;
|
||
|
for(int i=0; i<steps; i++) {
|
||
|
if(invalid_any(at)) return at;
|
||
|
gstep(at, v);
|
||
|
}
|
||
|
return at;
|
||
|
}
|
||
|
|
||
|
ld x_to_scr(ld x) { return 150 + 100 * x; }
|
||
|
ld y_to_scr(ld x) { return 950 - log(x * 1e9) / log(10) * 80; }
|
||
|
|
||
|
hyperpoint pt(ld x, ld y) { return tC0(atscreenpos(x, y, 1)); };
|
||
|
|
||
|
map<pair<string, color_t>, map<double, double>> maxerr;
|
||
|
|
||
|
bool scatterplot;
|
||
|
|
||
|
void queueline1(hyperpoint a, hyperpoint b, color_t c) {
|
||
|
queueline(shiftless(a), shiftless(b), c);
|
||
|
}
|
||
|
|
||
|
void draw_graph() {
|
||
|
vid.linewidth *= 2;
|
||
|
queueline1(pt(0, 950), pt(1500, 950), 0xFF);
|
||
|
queueline1(pt(150, 0), pt(150, 1000), 0xFF);
|
||
|
|
||
|
vid.linewidth /= 2;
|
||
|
|
||
|
for(int i=1; i<=9; i++) {
|
||
|
queueline1(pt(x_to_scr(i), 950), pt(x_to_scr(i), 960), 0xFF);
|
||
|
queuestr(x_to_scr(i), 980, 0, 60, its(i), 0, 0, 8);
|
||
|
}
|
||
|
|
||
|
for(int i=-8; i<=2; i++) {
|
||
|
ld v = pow(10, i);
|
||
|
queueline1(pt(140, y_to_scr(v)), pt(150, y_to_scr(v)), 0xFF);
|
||
|
queuestr(70, y_to_scr(v), 0, 60, "1e"+its(i), 0, 0, 8);
|
||
|
vid.linewidth /= 2;
|
||
|
queueline1(pt(1100, y_to_scr(v)), pt(150, y_to_scr(v)), 0xFF);
|
||
|
vid.linewidth *= 2;
|
||
|
}
|
||
|
|
||
|
vid.linewidth *= 2;
|
||
|
for(auto& [id, graph]: maxerr) {
|
||
|
auto& [name, col] = id;
|
||
|
ld last = 1e-9;
|
||
|
ld lastx = 0;
|
||
|
for(auto [x, y]: graph) {
|
||
|
if(scatterplot) {
|
||
|
curvepoint(pt(x_to_scr(x)+2, y_to_scr(y)));
|
||
|
curvepoint(pt(x_to_scr(x)-2, y_to_scr(y)));
|
||
|
queuecurve(shiftless(Id), col, 0, PPR::LINE);
|
||
|
curvepoint(pt(x_to_scr(x), y_to_scr(y)+2));
|
||
|
curvepoint(pt(x_to_scr(x), y_to_scr(y)-2));
|
||
|
queuecurve(shiftless(Id), col, 0, PPR::LINE);
|
||
|
}
|
||
|
if(y_to_scr(y) > y_to_scr(last) - x_to_scr(lastx) + x_to_scr(x)) continue;
|
||
|
if(y > 100) y = 100;
|
||
|
last = y;
|
||
|
lastx = x;
|
||
|
ld xx = x;
|
||
|
if(xx > 9) xx = 9;
|
||
|
if(!scatterplot) curvepoint(pt(x_to_scr(x), y_to_scr(y)));
|
||
|
if(xx == 9) break;
|
||
|
}
|
||
|
if(!scatterplot) {
|
||
|
queuestr(1100, y_to_scr(last), 0, 60, name, col >> 8, 0, 0);
|
||
|
queuecurve(shiftless(Id), col, 0, PPR::LINE);
|
||
|
}
|
||
|
}
|
||
|
vid.linewidth /= 2;
|
||
|
|
||
|
drawqueue();
|
||
|
}
|
||
|
|
||
|
void draw_sol_diffeq_graph() {
|
||
|
}
|
||
|
|
||
|
void make_graph(string fname) {
|
||
|
|
||
|
start_game();
|
||
|
|
||
|
flat_model_enabler fme;
|
||
|
|
||
|
shot::shotx = 1500;
|
||
|
shot::shoty = 1000;
|
||
|
shot::format = shot::screenshot_format::svg;
|
||
|
svg::divby = 1;
|
||
|
|
||
|
shot::take(fname, draw_graph);
|
||
|
}
|
||
|
|
||
|
void sol_diffeq_graph() {
|
||
|
|
||
|
auto& s = sn::get_tabled();
|
||
|
s.load();
|
||
|
|
||
|
for(int x=0; x<s.PRECX-1; x++)
|
||
|
for(int y=0; y<s.PRECY-1; y++)
|
||
|
for(int z=0; z<s.PRECZ-1; z++) {
|
||
|
println(hlog, tie(x,y,z));
|
||
|
auto ax = sn::ix_to_x(x / (s.PRECX-1.));
|
||
|
auto ay = sn::ix_to_x(y / (s.PRECY-1.));
|
||
|
auto az = sn::iz_to_z(z / (s.PRECZ-1.));
|
||
|
|
||
|
ld d = hypot(ax, hypot(ay, az));
|
||
|
|
||
|
hyperpoint h = point31(ax, ay, az);
|
||
|
hyperpoint v = inverse_exp(shiftless(h)); // , pfNO_INTERPOLATION);
|
||
|
|
||
|
hyperpoint actual = numerical_exp(v, 2000, geodesic_step_rk4);
|
||
|
if(invalid_any(actual)) continue;
|
||
|
|
||
|
auto test = [&] (string name, color_t col, int iter, auto method) {
|
||
|
hyperpoint res = numerical_exp(v, iter, method);
|
||
|
if(invalid_any(res)) return;
|
||
|
ld err = geo_dist(actual, res);
|
||
|
ld& me = maxerr[{name, col}][d];
|
||
|
me = max(me, err);
|
||
|
};
|
||
|
|
||
|
test("RK2 5", 0xB0E0B0FF, 5, geodesic_step_rk4);
|
||
|
test("RK2 10", 0x8AD0A0FF, 10, geodesic_step_rk4);
|
||
|
test(" ", 0x90E090FF, 20, geodesic_step_rk4);
|
||
|
test("RK2 30", 0x80C080FF, 30, geodesic_step_rk4);
|
||
|
test("RK4 100", 0x408040FF, 100, geodesic_step_rk4);
|
||
|
test("RK4 300", 0x306030FF, 300, geodesic_step_rk4);
|
||
|
test("RK4 1000", 0x204020FF, 1000, geodesic_step_rk4);
|
||
|
test("mid 100", 0x8080C0FF, 100, geodesic_step_midpoint);
|
||
|
test("mid 1000", 0x404080FF, 1000, geodesic_step_midpoint);
|
||
|
}
|
||
|
|
||
|
make_graph("sol-diff-graph.svg");
|
||
|
}
|
||
|
|
||
|
void sol_numerics_out() {
|
||
|
hyperpoint v = inverse_exp(shiftless(point31(2, 1, 0)));
|
||
|
// point3(0.1, 0, 10);
|
||
|
|
||
|
hyperpoint result = numerical_exp(v, 1000000, geodesic_step_rk4);
|
||
|
|
||
|
println(hlog, "exp(", v, ") = ", result);
|
||
|
|
||
|
for(int steps: {1, 2, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000, 100000}) {
|
||
|
shstream ss;
|
||
|
auto experiment = [&] (string name, auto f) {
|
||
|
print(ss, name, lalign(30, hdist0(numerical_exp(v, steps, f) - result)));
|
||
|
};
|
||
|
experiment(" P ", geodesic_step_poor);
|
||
|
experiment(" E ", geodesic_step_euler);
|
||
|
experiment(" M ", geodesic_step_midpoint);
|
||
|
experiment(" R ", geodesic_step_rk4);
|
||
|
println(hlog, " steps=", lalign(6, steps), ss.s);
|
||
|
}
|
||
|
|
||
|
println(hlog, "timing M");
|
||
|
numerical_exp(v, 10000000, geodesic_step_midpoint);
|
||
|
|
||
|
println(hlog, "timing R");
|
||
|
numerical_exp(v, 10000000, geodesic_step_rk4);
|
||
|
|
||
|
println(hlog, "ok");
|
||
|
}
|
||
|
|
||
|
vector<ld> quantiles(vector<ld> data) {
|
||
|
sort(data.begin(), data.end());
|
||
|
if(isize(data) <= 20) return data;
|
||
|
vector<ld> q;
|
||
|
for(int i=0; i<=20; i++)
|
||
|
q.push_back(data[(isize(data)-1)*i/20]);
|
||
|
return q;
|
||
|
}
|
||
|
|
||
|
auto smax(auto& tab, ld& i, ld x) { if(x) tab[i] = max(tab[i], x); }
|
||
|
|
||
|
ld median(vector<ld> v) {
|
||
|
sort(v.begin(), v.end());
|
||
|
return v[isize(v)/2];
|
||
|
}
|
||
|
|
||
|
void sol_table_test() {
|
||
|
|
||
|
// auto& length_good = maxerr[{"length/good", 0x408040FF}];
|
||
|
// auto& angle_good = maxerr[{"angle/good", 0x404080FF}];
|
||
|
|
||
|
// auto& length_good2 = maxerr[{"length/mid", 0x808040FF}];
|
||
|
// auto& angle_good2 = maxerr[{"angle/mid", 0x804080FF}];
|
||
|
|
||
|
// auto& length_bad = maxerr[{"length/bad", 0xC08040FF}];
|
||
|
// auto& angle_bad = maxerr[{"angle/bad", 0xC04080FF}];
|
||
|
|
||
|
// map<string, int> wins;
|
||
|
|
||
|
auto& s = sn::get_tabled();
|
||
|
s.load();
|
||
|
|
||
|
map<double, double> maxerr;
|
||
|
|
||
|
int good = 0, bad = 0;
|
||
|
|
||
|
vector<ld> length_errors;
|
||
|
vector<ld> angle_errors;
|
||
|
|
||
|
vector<ld> split;
|
||
|
|
||
|
vector<ld> lerrs[4][4][4], aerrs[4][4][4];
|
||
|
|
||
|
for(int a: {16, 32, 48, 60})
|
||
|
println(hlog, "xy_", a, " : ", sn::ix_to_x(a / (s.PRECX-1.)));
|
||
|
|
||
|
for(int a: {16, 32, 48, 60})
|
||
|
println(hlog, "z_", a, " : ", sn::iz_to_z(a / (s.PRECZ-1.)));
|
||
|
|
||
|
|
||
|
FILE *g = fopen("solv-error-data.csv", "wt");
|
||
|
|
||
|
for(ld x=0; x<s.PRECX-4; x+=.25)
|
||
|
for(ld y=0; y<s.PRECY-4; y+=.25)
|
||
|
for(ld z=0; z<s.PRECZ-4; z+=.25) {
|
||
|
|
||
|
int xp = x * 4 / s.PRECX;
|
||
|
int yp = y * 4 / s.PRECY;
|
||
|
int zp = z * 4 / s.PRECZ;
|
||
|
|
||
|
if(y == 0.5 && z== 0.5) println(hlog, x, " : ", good, " vs ", bad);
|
||
|
|
||
|
int a0 = 0, b0 = 0;
|
||
|
|
||
|
for(ld x1: {floor(x), ceil(x)})
|
||
|
for(ld y1: {floor(y), ceil(y)})
|
||
|
for(ld z1: {floor(z), ceil(z)}) {
|
||
|
auto ax = sn::ix_to_x(x1 / (s.PRECX-1.));
|
||
|
auto ay = sn::ix_to_x(y1 / (s.PRECY-1.));
|
||
|
auto az = sn::iz_to_z(z1 / (s.PRECZ-1.));
|
||
|
|
||
|
hyperpoint h = point31(ax, ay, az);
|
||
|
|
||
|
hyperpoint v = inverse_exp(shiftless(h), pfNO_INTERPOLATION);
|
||
|
|
||
|
if(v[2] > 0) a0++;
|
||
|
else b0++;
|
||
|
}
|
||
|
|
||
|
bool bad_region = x > s.PRECX/2 && y > s.PRECY/2 && z < s.PRECZ/2;
|
||
|
|
||
|
bool bad_break = bad_region && a0 && b0;
|
||
|
|
||
|
auto ax = sn::ix_to_x(x / (s.PRECX-1.));
|
||
|
auto ay = sn::ix_to_x(y / (s.PRECY-1.));
|
||
|
auto az = sn::iz_to_z(z / (s.PRECZ-1.));
|
||
|
|
||
|
hyperpoint h = point31(ax, ay, az);
|
||
|
|
||
|
hyperpoint v = inverse_exp(shiftless(h), bad_break ? pfNO_INTERPOLATION : pNORMAL);
|
||
|
|
||
|
// println(hlog, "looking for ", h);
|
||
|
|
||
|
// println(hlog, "exp(", v, ") = ", nisot::numerical_exp(v));
|
||
|
|
||
|
hyperpoint v1 = iterative_solve(h, v, 1e-9, false);
|
||
|
|
||
|
// println(hlog, "exp(", v1, ") = ", nisot::numerical_exp(v1));
|
||
|
|
||
|
hyperpoint h2 = nisot::numerical_exp(v1);
|
||
|
|
||
|
if(sqhypot_d(3, h-h2) > 1e-6) {
|
||
|
bad++;
|
||
|
continue;
|
||
|
}
|
||
|
else good++;
|
||
|
|
||
|
ld dv = hypot_d(3, v);
|
||
|
ld dv1 = hypot_d(3, v1);
|
||
|
|
||
|
ld lerr = abs(dv - dv1);
|
||
|
ld aerr = asin(hypot_d(3, v^v1) / dv / dv1);
|
||
|
|
||
|
ld d = hypot_d(3, v1);
|
||
|
|
||
|
if(dv == 0 || dv1 == 0) continue;
|
||
|
|
||
|
if(invalid_any(v1) || invalid_any(v)) {
|
||
|
println(hlog, "invalid");
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if(isnan(aerr)) println(hlog, "v = ", v, " v1 = ", v1, "aerr");
|
||
|
|
||
|
else fprintf(g, "%lf;%lf;%lf;%lf;%lf;%lf;%lf;%lf;%d\n",
|
||
|
x, y, z,
|
||
|
ax, ay, az,
|
||
|
lerr, aerr,
|
||
|
bad_break
|
||
|
);
|
||
|
|
||
|
lerrs[zp][yp][xp].push_back(lerr);
|
||
|
aerrs[zp][yp][xp].push_back(aerr);
|
||
|
}
|
||
|
|
||
|
fclose(g);
|
||
|
|
||
|
|
||
|
/*
|
||
|
if(d >= 3 && d <= 3.1 && !bad_region) {
|
||
|
println(hlog, tie(x,y,z), " : ", lerr);
|
||
|
split.push_back(lerr);
|
||
|
}
|
||
|
|
||
|
if(bad_break)
|
||
|
smax(length_bad, d, lerr),
|
||
|
smax(angle_bad, d, aerr),
|
||
|
0;
|
||
|
else if(bad_region)
|
||
|
smax(length_good2, d, lerr),
|
||
|
smax(angle_good2, d, aerr),
|
||
|
0;
|
||
|
else
|
||
|
smax(length_good, d, lerr),
|
||
|
smax(angle_good, d, aerr),
|
||
|
0;
|
||
|
length_errors.push_back(lerr);
|
||
|
|
||
|
ld cross = hypot_d(3, v^v1) / dv / dv1;
|
||
|
|
||
|
angle_errors.push_back(cross);
|
||
|
}
|
||
|
|
||
|
// println(hlog, quantiles(length_errors));
|
||
|
println(hlog, quantiles(split)); */
|
||
|
|
||
|
// for(auto p: angle_good) println(hlog, p);
|
||
|
|
||
|
// make_graph("sol-la-errors.svg");
|
||
|
|
||
|
FILE *f = fopen("devmods/graph.tex", "wt");
|
||
|
|
||
|
|
||
|
fprintf(f, "\\documentclass{article}\n\\begin{document}\n");
|
||
|
fprintf(f, "\\small\\setlength{\\tabcolsep}{3pt}\n");
|
||
|
|
||
|
fprintf(f, "\\begin{tabular}{|c|cccc|cccc|cccc|cccc|}\n\\hline\n");
|
||
|
for(int z=0; z<4; z++) {
|
||
|
fprintf(f, " & ");
|
||
|
fprintf(f, "\\multicolumn{4}{|c%s}{$z_%d$}", z==3?"|":"", z);
|
||
|
}
|
||
|
fprintf(f, "|\\\\\n");
|
||
|
for(int z=0; z<4; z++) {
|
||
|
for(int x=0; x<4; x++) {
|
||
|
fprintf(f, " & ");
|
||
|
fprintf(f, "$x_%d$", x);
|
||
|
}
|
||
|
}
|
||
|
fprintf(f, "\\\\\n\\hline");
|
||
|
for(int y=0; y<4; y++) {
|
||
|
fprintf(f, "$y_%d$ ", y);
|
||
|
for(int z=0; z<4; z++) {
|
||
|
for(int x=0; x<4; x++) {
|
||
|
fprintf(f, " & ");
|
||
|
fprintf(f, "%4.2g", log10(median(lerrs[z][y][x])));
|
||
|
}
|
||
|
}
|
||
|
fprintf(f, "\\\\\n");
|
||
|
}
|
||
|
fprintf(f, "\\hline \n");
|
||
|
for(int y=0; y<4; y++) {
|
||
|
fprintf(f, "$y_%d$ ", y);
|
||
|
for(int z=0; z<4; z++) {
|
||
|
for(int x=0; x<4; x++) {
|
||
|
fprintf(f, " & ");
|
||
|
fprintf(f, "%4.2g", log10(median(aerrs[z][y][x])));
|
||
|
}
|
||
|
}
|
||
|
fprintf(f, "\\\\\n");
|
||
|
}
|
||
|
fprintf(f, "\\hline\n");
|
||
|
fprintf(f, "\\end{tabular}\n");
|
||
|
fprintf(f, "\\end{document}\n");
|
||
|
fclose(f);
|
||
|
}
|
||
|
|
||
|
int readArgs() {
|
||
|
using namespace arg;
|
||
|
|
||
|
if(0) ;
|
||
|
|
||
|
else if(argis("-sol-diff-graph")) {
|
||
|
sol_diffeq_graph();
|
||
|
}
|
||
|
|
||
|
else if(argis("-sol-tabletest")) {
|
||
|
sol_table_test();
|
||
|
}
|
||
|
|
||
|
else if(argis("-sol-numerics")) {
|
||
|
sol_numerics_out();
|
||
|
}
|
||
|
|
||
|
else return 1;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
auto nhook = addHook(hooks_args, 100, readArgs);
|
||
|
|
||
|
}
|
||
|
#endif
|