1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2024-12-27 02:20:36 +00:00
hyperrogue/devmods/reps/rep-halfplane.cpp

183 lines
7.1 KiB
C++
Raw Normal View History

2023-06-21 13:10:42 +00:00
/** representation based on the halfplane model; assumes Dim=3 */
namespace reps {
template<class F> struct sl2 : public array<F, 4> {
sl2(F a, F b, F c, F d) { self[0] = a; self[1] = b; self[2] = c; self[3] = d; }
sl2 operator * (const sl2& sec) const {
return sl2(
self[0] * sec[0] + self[1] * sec[2],
self[0] * sec[1] + self[1] * sec[3],
self[2] * sec[0] + self[3] * sec[2],
self[2] * sec[1] + self[3] * sec[3]
);
}
std::string print() {
return hr::lalign(0, "[", self[0], ",", self[1], ";", self[2], ",", self[3], "]");
}
};
TD sl2<typename D::Number> split_quaternion_to_sl2(const multivector<D>& h) {
auto h3 = h[0], h2 = h[1 | 2], h1 = h[1 | 4], h0 = h[2 | 4];
return sl2(h3 - h1, h2 + h0, -h2 + h0, h3 + h1);
}
TD multivector<D> sl2_to_split_quaternion(const sl2<typename D::Number>& e) {
auto h0 = (e[1] + e[2]) / 2;
auto h3 = (e[0] + e[3]) / 2;
auto h1 = (e[3] - e[0]) / 2;
auto h2 = (e[1] - e[2]) / 2;
auto res = zero_vector<multivector_data<D>>();
res[0] = h3; res[1 | 2] = h2; res[1 | 4] = h1; res[2 | 4] = h0;
return res;
}
template<class N> using sl2c = sl2<std::complex<N>>;
TD sl2c<typename D::Number> split_biquaternion_to_sl2c(const multivector<D>& h) {
using cn = std::complex<typename D::Number>;
return sl2(cn(h[0]-h[9], h[15]-h[6]), cn(h[3]+h[10], -h[5]-h[12]), cn(h[10]-h[3], h[12]-h[5]), cn(h[0]+h[9], h[6]+h[15]));
}
TD multivector<D> sl2c_to_split_biquaternion(const sl2c<typename D::Number>& e) {
auto res = zero_vector<multivector_data<D>>();
res[0] = +(real(e[0]) + real(e[3])) / 2;
res[3] = +(real(e[1]) - real(e[2])) / 2;
res[5] = -(imag(e[1]) + imag(e[2])) / 2;
res[6] = +(imag(e[3]) - imag(e[0])) / 2;
res[9] = +(real(e[3]) - real(e[0])) / 2;
res[10] = +(real(e[1]) + real(e[2])) / 2;
res[12] = +(imag(e[2]) - imag(e[1])) / 2;
res[15] = +(imag(e[0]) + imag(e[3])) / 2;
return res;
}
TD struct rep_halfplane {
using data = D;
using N = typename D::Number;
using point = std::complex<N>;
using isometry = sl2<N>;
static isometry cspin(int i, int j, N alpha) {
// return split_quaternion_to_sl2( rep_clifford<D>::cspin(i, j, alpha) );
if(i>j) std::swap(i, j), alpha = -alpha; alpha /= 2;
auto ca = cos(alpha), sa = sin(alpha);
return isometry(ca, -sa, sa, ca);
}
static isometry cspin90(int i, int j, N alpha) {
// return split_quaternion_to_sl2( rep_clifford<D>::cspin(i, j, alpha) );
auto ca = sqrt(N(2)), sa = sqrt(N(2));
if(i>j) std::swap(i, j), sa = -sa;
return isometry(ca, -sa, sa, ca);
}
static isometry lorentz(int i, int j, N alpha) {
// return split_quaternion_to_sl2( rep_clifford<D>::lorentz(i, j, alpha) );
if(i>j) std::swap(i, j); alpha /= 2;
if(i == 0) return isometry(exp(-alpha), N(0), N(0), exp(alpha));
if(i == 1) {
auto ca = cosh(alpha), sa = sinh(alpha);
return isometry(ca, sa, sa, ca);
}
throw hr::hr_exception("bad lorentz");
}
static isometry id() { return isometry(N(1),N(0),N(0),N(1)); };
static point center() { return point(N(0), N(1)); };
static point apply(const isometry& T, const point& x) {
return (T[0] * x + T[1] * 1) / (T[2] * x + T[3] * 1);
};
static isometry apply(const isometry& T, const isometry& U) { return T * U; };
static typename rep_clifford<D>::point to_poincare(const point& x) {
auto a = real(x), b = imag(x);
auto tmp = isometry(sqrt(b), a/sqrt(b), N(0), N(1)/sqrt(b));
auto sq = sl2_to_split_quaternion<D>(tmp);
// sq[0] = (sqrt(b) + 1/sqrt(b)) / 2;; sq[1 | 2] = a/sqrt(b)/2; sq[1 | 4] = (1/sqrt(b) - sqrt(b)) / 2; sq[2 | 4] = a/sqrt(b)/2;
sq = despin(sq);
return typename rep_clifford<D>::point({{sq}});
}
static isometry inverse(isometry T) { return isometry(T[3], -T[1], -T[2], T[0]); }
static isometry push(const point& p) { return split_quaternion_to_sl2<D>(to_poincare(p)[0]); }
static N dist0(const point& x) { return rep_clifford<D>::dist0(to_poincare(x)); }
static N angle(const point& x) { return rep_clifford<D>::angle(to_poincare(x)); }
static N get_coord(const point& x, int i) { return rep_clifford<D>::get_coord(to_poincare(x), i); }
// imag may be very small and still important, so do not use the default complex print
static std::string print(const point& x) { return hr::lalign(0, "{real:", real(x), " imag:", imag(x), "}"); }
static std::string print(const isometry& x) { return x.print(); }
};
TD struct rep_halfspace {
using data = D;
using N = typename D::Number;
struct point { std::complex<N> xy; N z; };
using isometry = sl2c<N>;
static isometry cspin(int i, int j, N alpha) {
return split_biquaternion_to_sl2c( rep_clifford<D>::cspin(i, j, alpha) );
}
static isometry cspin90(int i, int j) {
return split_biquaternion_to_sl2c( rep_clifford<D>::cspin90(i, j) );
}
static isometry lorentz(int i, int j, N alpha) {
return split_biquaternion_to_sl2c( rep_clifford<D>::lorentz(i, j, alpha) );
}
static isometry id() { return isometry(N(1),N(0),N(0),N(1)); }
static point center() { return point{ .xy = N(0), .z = N(1) }; }
static point apply(const isometry& T, const point& x) {
auto nom = T[0] * x.xy + T[1] * N(1);
auto nomz= T[0] * x.z;
auto den = T[2] * x.xy + T[3] * N(1);
auto denz= T[2] * x.z;
// D = den + denz * j
auto dnorm = std::norm(den) + std::norm(denz);
using std::conj;
// conj(D) = conj(den) - denz * j
// N / D = (nom + nomz * j) / (den + denz * j) =
// = (nom + nomz * j) * (conj(den) - denz * j) / dnorm
// auto rxy = (nom * conj(den) - nomz * j * denz * j);
// auto rz*j = (-nom * denz * j + nomz * j * conj(den))
// apply the formula: j * a = conj(a) * j
auto rxy = (nom * conj(den) + nomz * conj(denz));
auto rz = (nomz * den - nom * denz); // todo only real part
// println(hlog, "imag of rz = ", imag(rz));
return point { .xy = rxy / dnorm, .z = real(rz) / dnorm };
};
static isometry apply(const isometry& T, const isometry& U) { return T * U; };
static typename rep_clifford<D>::point to_poincare(const point& x) {
auto tmp = isometry(sqrt(x.z), x.xy/sqrt(x.z), N(0), N(1)/sqrt(x.z));
auto sq = sl2c_to_split_biquaternion<D>(tmp);
sq = despin(sq);
return typename rep_clifford<D>::point({{sq}});
}
static isometry inverse(isometry T) { return isometry(T[3], -T[1], -T[2], T[0]); }
static isometry push(const point& p) { return split_biquaternion_to_sl2c<D>(to_poincare(p)[0]); }
static N dist0(const point& x) { return rep_clifford<D>::dist0(to_poincare(x)); }
static N angle(const point& x) { return rep_clifford<D>::angle(to_poincare(x)); }
static N get_coord(const point& x, int i) { return rep_clifford<D>::get_coord(to_poincare(x), i); }
// imag may be very small and still important, so do not use the default complex print
static std::string print(const point& x) { return hr::lalign(0, "{x:", real(x.xy), " y:", imag(x.xy), " z:", x.z, "}"); }
static std::string print(const isometry& x) { return x.print(); }
};
template<class D> using rep_half = typename std::conditional<D::Dim==3, rep_halfplane<D>, rep_halfspace<D>>::type;
}