mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2024-12-19 07:20:25 +00:00
83 lines
2.4 KiB
C++
83 lines
2.4 KiB
C++
|
// test the conjecture comparing triangulation distances and hyperbolic distances
|
||
|
|
||
|
namespace dhrg {
|
||
|
|
||
|
ld stats[32][3], wstats[32][3];
|
||
|
|
||
|
hyperpoint celltopoint(cell *c) {
|
||
|
return tC0(calc_relative_matrix(c, croot(), C0));
|
||
|
}
|
||
|
|
||
|
void do_analyze_grid(int maxv) {
|
||
|
cell *root = croot();
|
||
|
celllister cl(root, 32, maxv, NULL);
|
||
|
// if this works too slow, use a smaller number
|
||
|
// (you can also use a larger number if you have time of course)
|
||
|
|
||
|
// int rot = 0;
|
||
|
|
||
|
vector<ld> distances[128];
|
||
|
|
||
|
for(cell *c: cl.lst) {
|
||
|
hyperpoint h = celltopoint(c);
|
||
|
ld dd = hdist0(h);
|
||
|
int d = celldist(c);
|
||
|
stats[d][0] ++;
|
||
|
stats[d][1] += dd;
|
||
|
stats[d][2] += dd*dd;
|
||
|
distances[d].push_back(dd);
|
||
|
|
||
|
if(d>0) {
|
||
|
ld alpha[2];
|
||
|
int qalpha = 0;
|
||
|
forCellCM(c2, c) if(celldist(c2) == d) {
|
||
|
hyperpoint h1 = celltopoint(c2);
|
||
|
alpha[qalpha++] = atan2(h1[0], h1[1]);
|
||
|
}
|
||
|
if(qalpha != 2) printf("Error: qalpha = %d\n", qalpha);
|
||
|
ld df = alpha[0] - alpha[1];
|
||
|
if(df<0) df = -df;
|
||
|
while(df > 2*M_PI) df -= 2*M_PI;
|
||
|
while(df > M_PI) df = 2*M_PI - df;
|
||
|
df /= 4*M_PI;
|
||
|
wstats[d][0] += df;
|
||
|
if(d==2) printf("df == %" PLDF " dd = %" PLDF "\n", df, dd);
|
||
|
wstats[d][1] += df*dd;
|
||
|
wstats[d][2] += df*dd*dd;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
println(hlog, "log(gamma) = ", log(cgi.expansion->get_growth()));
|
||
|
|
||
|
ld lE, dif, lwE;
|
||
|
for(int d=0; d<32; d++) if(stats[d][0]) {
|
||
|
int q = stats[d][0];
|
||
|
if(q != cgi.expansion->get_descendants(d).approx_int()) continue;
|
||
|
ld E = stats[d][1] / q;
|
||
|
ld E2 = stats[d][2] / q;
|
||
|
ld Vr = E2 - E * E;
|
||
|
if(Vr < 0) Vr = 0;
|
||
|
dif = E- lE; lE = E;
|
||
|
ld Vd = d > 1 ? Vr/(d-1) : 0;
|
||
|
|
||
|
ld wE = wstats[d][1];
|
||
|
ld wE2 = wstats[d][2];
|
||
|
ld wVr = wE2 - wE * wE;
|
||
|
|
||
|
print(hlog, format("d=%2d: q = %8d E = %12.8" PLDF " dif = %12.8" PLDF " Vr = %12.8" PLDF " Vr/(d-1)=%12.8" PLDF,
|
||
|
d, q, E, dif, Vr, Vd));
|
||
|
|
||
|
if(0) print(hlog, format(" | <%" PLDF "> ex = %12.8" PLDF " d.ex = %12.8" PLDF " Vr = %12.8" PLDF, wstats[d][0], wE, wE - lwE, wVr));
|
||
|
|
||
|
ld Sigma = sqrt(Vr);
|
||
|
sort(distances[d].begin(), distances[d].end());
|
||
|
if(Sigma) for(int u=1; u<8; u++)
|
||
|
print(hlog, format(" %8.5" PLDF, (distances[d][u * isize(distances[d]) / 8] - E) / Sigma));
|
||
|
|
||
|
println(hlog);
|
||
|
lwE = wE;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|