mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2024-11-14 17:34:47 +00:00
144 lines
3.6 KiB
C++
144 lines
3.6 KiB
C++
|
#include "rogueviz.h"
|
||
|
|
||
|
/** \brief Snowball visualization
|
||
|
*
|
||
|
* This visualization puts small objects ('snowballs') randomly throughout the space.
|
||
|
* It provides a way to visualize the geometry without any tessellation.
|
||
|
*
|
||
|
* Should work for tessellations where every tile is congruent.
|
||
|
*
|
||
|
* The snow_lambda parameter gives the expected number of snowballs per cell.
|
||
|
* (The number in every region has Poisson distribution with mean proportional to its area.)
|
||
|
*
|
||
|
* Freezes for tessellations with ideal vertices
|
||
|
*
|
||
|
*
|
||
|
*
|
||
|
**/
|
||
|
|
||
|
namespace rogueviz {
|
||
|
|
||
|
namespace nilcompass {
|
||
|
|
||
|
hyperpoint to_rot(hyperpoint h) {
|
||
|
if(nil) h[2] -= h[0] * h[1] / 2;
|
||
|
return h;
|
||
|
}
|
||
|
|
||
|
hyperpoint to_heis(hyperpoint h) {
|
||
|
if(nil) h[2] += h[0] * h[1] / 2;
|
||
|
if(sphere || hyperbolic) h = normalize(h);
|
||
|
if(sphere || hyperbolic) h[0] /= 2, h[1] /= 2, h[2] /= 2;
|
||
|
return h;
|
||
|
}
|
||
|
|
||
|
struct shape {
|
||
|
color_t col;
|
||
|
int i;
|
||
|
int is;
|
||
|
hpcshape sh;
|
||
|
};
|
||
|
|
||
|
vector<shape> shapes;
|
||
|
|
||
|
bool known;
|
||
|
|
||
|
bool draw_compass(cell *c, const shiftmatrix& V) {
|
||
|
|
||
|
if(!known) {
|
||
|
known = true;
|
||
|
|
||
|
for(int i=0; i<3; i++) for(int is=-1; is<2; is+=2)
|
||
|
for(int js=-1; js<2; js+=2)
|
||
|
for(int ks=-1; ks<2; ks+=2)
|
||
|
{
|
||
|
int j = (i+1) % 3;
|
||
|
int k = (j+1) % 3;
|
||
|
color_t col = 0xFFFFFFFF;
|
||
|
part(col, i+1) = 0xA0;
|
||
|
if(js*ks==1) {
|
||
|
part(col, i+1) = 0x30; // col = gradient(col, 0xFF, 0, 0.8, 1);
|
||
|
}
|
||
|
if(is == -1) part(col, j+1) = part(col, i+1);
|
||
|
|
||
|
shapes.emplace_back(shape{col, i, is, hpcshape()});
|
||
|
|
||
|
auto& sh = shapes.back().sh;
|
||
|
|
||
|
cgi.bshape(sh, PPR::LINE);
|
||
|
|
||
|
hyperpoint p1 = C0 + ctangent(i, is * .4);
|
||
|
hyperpoint p2 = C0 + ctangent(j, js * .15);
|
||
|
hyperpoint p3 = C0 + ctangent(k, ks * .15);
|
||
|
|
||
|
for(int i=0; i<10; i++) cgi.hpcpush(to_heis(lerp(p1, p2, i/10.)));
|
||
|
for(int i=0; i<10; i++) cgi.hpcpush(to_heis(lerp(p2, p3, i/10.)));
|
||
|
for(int i=0; i<10; i++) cgi.hpcpush(to_heis(lerp(p3, p1, i/10.)));
|
||
|
|
||
|
cgi.hpcpush(to_heis(p1));
|
||
|
|
||
|
cgi.finishshape();
|
||
|
}
|
||
|
cgi.extra_vertices();
|
||
|
}
|
||
|
|
||
|
poly_outline = 0;
|
||
|
for(auto& [col, i, is, sh]: shapes) {
|
||
|
|
||
|
ld t = 36 + ticks / 1000.;
|
||
|
|
||
|
auto remap = [&] (int _i, int _is) {
|
||
|
if(i == _i && is == _is) return col;
|
||
|
int c = part(col, 1) + part(col, 2) + part(col, 3);
|
||
|
c += 1; c /= 12;
|
||
|
color_t col1 = col;
|
||
|
part(col1, 1) = part(col1, 2) = part(col1, 3) = c;
|
||
|
return gradient(col, col1, 0, 0.9, 1);
|
||
|
};
|
||
|
|
||
|
vector<pair<ld, color_t>> clist = {
|
||
|
{36, col},
|
||
|
{42.5, col},
|
||
|
{42.7, remap(1, -1)},
|
||
|
{43.9, remap(1, -1)},
|
||
|
{44.1, remap(0, +1)},
|
||
|
{44.9, remap(0, +1)},
|
||
|
{45.1, remap(1, +1)},
|
||
|
{46.0, remap(1, +1)},
|
||
|
{46.2, remap(0, -1)},
|
||
|
{47.2, remap(0, -1)},
|
||
|
{47.4, remap(2, -1)},
|
||
|
{48.1, remap(2, -1)},
|
||
|
{48.3, remap(2, +1)},
|
||
|
{49.1, remap(2, +1)},
|
||
|
{49.3, col},
|
||
|
{99, col}
|
||
|
};
|
||
|
|
||
|
int step = 0;
|
||
|
while(t > clist[step+1].first) step++;
|
||
|
auto smoothen = [&] (ld x) { return x * x * (3 - 2*x); };
|
||
|
auto t1 = ilerp(clist[step].first, clist[step+1].first, t);
|
||
|
auto col1 = gradient(clist[step].second, clist[step+1].second, 0, smoothen(t1), 1);
|
||
|
|
||
|
queuepoly(V, sh, col1);
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
auto hchook = arg::add3("-nil-compass", [] { rv_hook(hooks_drawcell, 100, draw_compass); });
|
||
|
|
||
|
}
|
||
|
}
|
||
|
// 36.00 -> START
|
||
|
// 42.6 -> NORTH
|
||
|
// 44.0 -> EAST
|
||
|
// 45.0 -> SOUTH
|
||
|
// 46.1 -> WEST
|
||
|
// 47.3 -> UP
|
||
|
// 48.2 -> DOWN
|
||
|
// 49.2 -> ...
|
||
|
// 53.00 -> END
|
||
|
|