1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2024-11-05 05:36:17 +00:00
hyperrogue/devmods/reps/rep-multi.cpp

356 lines
13 KiB
C++
Raw Normal View History

2023-06-21 13:10:42 +00:00
namespace reps {
TD typename D::Number acos_auto(typename D::Number x) {
using N = typename D::Number;
if(hyperbolic) {
if(x < N(1)) return N(0);
return acosh(x);
}
if(sphere) {
if(x > N(1)) return N(0);
return acos(x);
}
throw hr::hr_exception("error");
}
/* use the linear representation, as in HyperRogue, but DO NOT apply nm, for comparison */
TD struct rep_linear_nn {
using data = D;
using point = mvector<data>;
using isometry = matrix<data>;
using N = typename D::Number;
static constexpr isometry id() {
matrix<D> result;
for(int i=0; i<D::Dim; i++)
for(int j=0; j<D::Dim; j++)
result[i][j] = N(i == j);
return result;
};
static constexpr isometry cspin(int i, int j, typename D::Number angle) {
auto res = id();
auto ca = cos(angle), sa = sin(angle);
res[i][i] = ca;
res[j][j] = ca;
res[i][j] = sa;
res[j][i] = -sa;
return res;
};
static constexpr isometry cspin90(int i, int j) {
auto res = id();
res[i][i] = 0;
res[j][j] = 0;
res[i][j] = 1;
res[j][i] = -1;
return res;
};
static constexpr isometry lorentz(int i, int j, typename D::Number angle) {
auto res = id();
auto ca = cosh(angle), sa = sinh(angle);
res[i][i] = ca;
res[j][j] = ca;
res[i][j] = sa;
res[j][i] = sa;
return res;
}
static constexpr point center() { return unit_vector<data>(D::Dim-1); }
static point apply(const isometry& T, const point& x) { return T * x; };
static isometry apply(const isometry& T, const isometry& U) { return T * U; };
static typename D::Number dist0(point x) {
return acos_auto<D> (x[D::Dim-1]);
}
static typename D::Number angle(const point& x) { return atan2(x[1], x[0]); }
static typename D::Number get_coord(point x, int i) { return x[i]; }
static isometry inverse(isometry T) {
for(int i=0; i<D::Dim; i++)
for(int j=0; j<i; j++) std::swap(T[i][j], T[j][i]);
if constexpr(D::Flipped != -1) {
for(int i=0; i<D::Dim-1; i++) T[i][D::Dim-1] = -T[i][D::Dim-1];
for(int i=0; i<D::Dim-1; i++) T[D::Dim-1][i] = -T[D::Dim-1][i];
}
return T;
}
static isometry push(const point& p) {
auto res = id();
// to do: for spherical!
N fac = N(1)/(p[D::Dim-1]+N(1));
for(int i=0; i<D::Dim-1; i++)
for(int j=0; j<D::Dim-1; j++)
res[i][j] += p[i] * p[j] * fac;
for(int d=0; d<D::Dim-1; d++)
res[d][D::Dim-1] = p[d],
res[D::Dim-1][d] = p[d];
res[D::Dim-1][D::Dim-1] = p[D::Dim-1];
return res;
}
static std::string print(point p) { return nzv(p); }
static std::string print(isometry p) { return nzv(p); }
};
TD mvector<D> get_column(matrix<D> a, int id) {
mvector<D> tmp;
for(int i=0; i<D::Dim; i++) tmp[i] = a[i][id];
return tmp;
}
TD typename D::Number inner(mvector<D> a, mvector<D> b) {
using N = typename D::Number;
N res(0);
for(int i=0; i<D::Dim; i++) res += a[i] * b[i] * (i==D::Flipped?-1:1);
if(isnan(res) || isinf(res)) return N(0);
return res;
}
TD void set_column(matrix<D>& a, int id, mvector<D> v) {
for(int i=0; i<D::Dim; i++) a[i][id] = v[i];
}
TD typename D::Number sqnorm(matrix<D> a) { return sqnorm<D>(get_column<D>(a, D::Dim-1)); }
bool fix_matrices;
TD matrix<D> apply_nm(matrix<D> a) {
using N = typename D::Number;
// normalize first
auto& lead = a[D::Dim-1][D::Dim-1];
if(nm == nmFlatten) a = a / lead, cbc[cbcDiv]--;
if(nm == nmForced || nm == nmWeak) a = a * pow(sqnorm<D>(a), -0.5);
if(nm == nmBinary) {
while(lead >= 2 && !isinf(lead)) { a = a / 2; } while(lead > 0 && lead < 0.5) { a = a * 2; }
}
// fixmatrix later
if(!fix_matrices) return a;
auto divby = (nm == nmBinary || nm == nmWeak || nm == nmCareless || nm == nmFlatten) ? sqnorm<D>(a) : N(1);
for(int i=D::Dim-2; i>=0; i--) {
auto ro = get_column(a, i);
auto last = get_column(a, D::Dim-1);
ro = ro + last * inner(ro, last) / divby;
for(int j=i+1; j<D::Dim-1; j++) {
auto next = get_column(a, j);
ro = ro - next * inner(ro, next) / divby;
}
auto in = inner(ro, ro);
if(in > N(0)) ro = ro * (pow(in*in, -.5) * divby);
set_column(a, i, ro);
}
return a;
}
/* use the linear representation, as in HyperRogue */
TD struct rep_linear {
using data = D;
using point = mvector<data>;
using isometry = matrix<data>;
using N = typename D::Number;
static constexpr isometry cspin(int i, int j, typename D::Number angle) {
return apply_nm<D>( rep_linear_nn<D>::cspin(i, j, angle) );
}
static constexpr isometry cspin90(int i, int j) {
return rep_linear_nn<D>::cspin90(i, j);
}
static constexpr isometry lorentz(int i, int j, typename D::Number angle) {
return apply_nm<D>( rep_linear_nn<D>::lorentz(i, j, angle) );
}
static isometry id() { return rep_linear_nn<D>::id(); };
static constexpr point center() { return unit_vector<data>(D::Dim-1); }
static point apply(const isometry& T, const point& x) { return apply_nm(T * x); };
static isometry apply(const isometry& T, const isometry& U) { return apply_nm(T * U); };
static typename D::Number dist0(point x) {
return acos_auto<D> (get_normalized(x, x[D::Dim-1]));
}
static typename D::Number angle(const point& x) { return atan2(x[1], x[0]); }
static typename D::Number get_coord(point x, int i) {
return get_normalized(x, x[i]); }
static isometry inverse(isometry T) {
return rep_linear_nn<D>::inverse(T);
}
static isometry push(const point& p) {
return apply_nm( rep_linear_nn<D>::push(get_normalized(p, p)) );
}
static std::string print(point p) { return nzv(p); }
static std::string print(isometry p) { return nzv(p); }
};
/* use the linear representation of points and the multivector representation of isometries */
TD struct rep_mixed {
using data = D;
using N = typename D::Number;
using point = mvector<data>;
using isometry = multivector<data>;
static isometry cspin(int i, int j, typename data::Number alpha, bool noflat = false) {
/* auto u = unit_vector<multivector_data<data>> (0);
auto ui = unit_vector<data> (i);
auto uj = unit_vector<data> (j);
return u * cos(alpha/2) + multimul(embed(ui), embed(uj)) * sin(alpha/2); */
auto res = zero_vector<multivector_data<data>> ();
if(nm == nmFlatten && !noflat) {
res[0] = N(1);
res[(1<<i) | (1<<j)] = tan(alpha/2) * (i > j ? 1 : -1);
return res;
}
res[0] = cos(alpha/2);
res[(1<<i) | (1<<j)] = sin(alpha/2) * (i > j ? 1 : -1);
return res;
}
static isometry cspin90(int i, int j, bool noflat = false) {
auto res = zero_vector<multivector_data<data>> ();
if(nm == nmFlatten && !noflat) {
res[0] = N(1);
res[(1<<i) | (1<<j)] = N(i > j ? 1 : -1);
return res;
}
res[0] = sqrt(N(.5));
res[(1<<i) | (1<<j)] = sqrt(N(.5)) * (i > j ? 1 : -1);
return res;
}
static isometry lorentz(int i, int j, typename data::Number alpha) {
/* // j must be time coordinate
auto u = unit_vector<multivector_data<data>> (0);
auto ui = unit_vector<data> (i);
auto uj = unit_vector<data> (j);
return u * cosh(alpha/2) + multimul(embed(uj), embed(ui)) * sinh(alpha/2); */
auto res = zero_vector<multivector_data<data>> ();
if(nm == nmFlatten) {
res[0] = N(1);
res[(1<<i) | (1<<j)] = tanh(alpha/2);
return res;
}
res[0] = cosh(alpha/2);
res[(1<<i) | (1<<j)] = sinh(alpha/2);
return res;
}
static isometry id() { return unit_vector<multivector_data<data>> (0); };
static constexpr point center() { return unit_vector<data>(D::Dim-1); }
static point apply(const isometry& T, const point& x) {
// return unembed(multimul(multimul(T, embed(x)), conjugate(T)));
return apply_nm(unembed(chkmul<odd<D>,flat_even<D>,underling<D>>(chkmul<flat_even<D>,flat_underling<D>,odd<D>>(T, embed(x)), conjugate(T))));
};
static isometry apply(const isometry& T, const isometry& U) {
auto res = apply_nm<even<D>, D>(chkmul<flat_even<D>,flat_even<D>,even<D>>(T, U));
return res;
}
static isometry inverse(isometry T) { return conjugate(T); }
static isometry push(const point& p) {
auto pm = get_normalized(p, p);
pm[D::Dim-1] = pm[D::Dim-1] + N(1);
// since p was normalized, sqnorm of pm is 2 * pm[D::Dim-1]
pm = pm * pow(2 * pm[D::Dim-1], -0.5);
multivector<data> v1 = embed(pm);
multivector<data> v2 = unit_vector<multivector_data<data>>(1<<(D::Dim-1));
multivector<data> v3 = chkmul<underling<D>,underling<D>,poincare<D>>(v1, v2);
v3 = apply_nm<poincare<D>, D>(v3);
return v3;
}
static typename D::Number dist0(point x) { return acos_auto<D> (get_normalized(x, x[D::Dim-1])); }
static typename D::Number angle(const point& x) { return atan2(x[1], x[0]); }
static typename D::Number get_coord(point x, int i) { return get_normalized(x, x[i]); }
static std::string print(point p) { return nzv(p); }
static std::string print(isometry p) { return nz(p); }
};
/* use the hyperboloid-Poincare representation of points and the multivector representation of isometries */
TD struct rep_clifford {
using data = D;
using N = typename D::Number;
using point = array< multivector<data>, 1>;
using isometry = multivector<data>;
static isometry cspin(int i, int j, typename data::Number alpha) { return rep_mixed<D>::cspin(i, j, alpha); }
static isometry cspin90(int i, int j) { return rep_mixed<D>::cspin90(i, j); }
// j must be the neg coordinate!
static isometry lorentz(int i, int j, N alpha) { return rep_mixed<D>::lorentz(i, j, alpha); }
static isometry id() { return rep_mixed<D>::id(); }
static constexpr point center() { return point{{ id() }}; }
static point apply(const isometry& T, const point& x) { return point{{ despin(chkmul<even<D>,poincare<D>,even<D>>(T, x[0])) }}; }
static isometry apply(const isometry& T, const isometry& U) { return apply_nm<even<D>,D>( chkmul<even<D>,even<D>,even<D>>(T, U) ); }
static isometry inverse(isometry T) { return conjugate(T); }
static isometry push(const point& p) { return p[0]; }
static typename D::Number dist0(const point& ax) {
return acos_auto<D>(get_normalized<poincare<D>, D, N>(ax[0], ax[0][0]))*2;
}
static constexpr int mvlast = 1<<(D::Dim-1);
static typename D::Number angle(const point& x) {
return atan2(x[0][2 | mvlast], x[0][1 | mvlast]);
}
static typename D::Number get_coord(const point& x, int i) {
auto x1 = multimul(multimul(x[0], unit_vector<multivector_data<data>> (mvlast)), conjugate(x[0]));
auto x2 = unembed(x1);
return get_normalized(x2, x2[i]);
}
static std::string print(point p) { return nz(p[0]); }
static std::string print(isometry p) { return nz(p); }
};
/* split isometries into the poincare and rotational part */
TD struct rep_gyro {
using data = D;
using N = typename D::Number;
using point = multivector<data>;
using isometry = poincare_rotation<data>;
static isometry cspin(int i, int j, typename data::Number alpha) { return { rep_mixed<D>::id(), rep_mixed<D>::cspin(i, j, alpha, true) }; }
static isometry cspin90(int i, int j, typename data::Number alpha) { return { rep_mixed<D>::id(), rep_mixed<D>::cspin90(i, j, alpha, true) }; }
static isometry lorentz(int i, int j, typename data::Number alpha) { return {rep_mixed<D>::lorentz(i, j, alpha), rep_mixed<D>::id() }; }
static isometry id() { return { rep_mixed<D>::id(), rep_mixed<D>::id() }; }
static constexpr point center() { return rep_mixed<D>::id(); }
static point apply(const isometry& T, const point& x) { return despin(chkmul<poincare<D>,poincare<D>,even<D>>(T.first, chkmul<rotational<D>,poincare<D>,poincare<D>>(T.second, x))); }
static isometry apply(const isometry& T, const isometry& U) {
auto R1 = apply_nm<rotational<D>, poincare<D>, poincare<D>> (T.second, U.first);
auto R2 = apply_nm<poincare<D>, poincare<D>, even<D>> (T.first, R1);
auto R3 = despin2(R2);
return { R3.first, apply_nm<rotational<D>, rotational<D>, rotational<D>> (R3.second, U.second) };
}
static isometry inverse(isometry T) { return { conjugate(T.first), conjugate(T.second) }; }
static isometry push(const point& p) { return { p, rep_mixed<D>::id() }; }
static typename D::Number dist0(const point& ax) {
return acos_auto<D>(get_normalized<poincare<D>, D, N>(ax, ax[0]))*2;
}
static constexpr int mvlast = 1<<(D::Dim-1);
static typename D::Number angle(const point& x) {
return atan2(x[0][2 | mvlast], x[0][1 | mvlast]);
}
static typename D::Number get_coord(const point& x, int i) {
auto x1 = multimul(multimul(x[0], unit_vector<multivector_data<data>> (mvlast)), conjugate(x[0]));
auto x2 = unembed(x1);
return get_normalized(x2, x2[i]);
}
static std::string print(point p) { return nz(p[0]); }
static std::string print(isometry p) { return "["+nz(p.first)+","+nz(p.second)+"]"; }
};
}