1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2025-01-12 10:20:32 +00:00
hyperrogue/rogueviz-fundamental.cpp

237 lines
6.2 KiB
C++
Raw Normal View History

// show the fundamental domain for quotient spaces
// Copyright (C) 2018 Zeno and Tehora Rogue, see 'hyper.cpp' for details
namespace hr {
namespace fundamental {
color_t color1, color2;
map<cell*, int> same;
map<cell*, transmatrix> gm;
bool is_connected(cellwalker cw) {
return same[cw.at] & (1<<cw.spin);
}
void be_connected(cellwalker cw) {
// transmatrix T = gm[cw.at];
same[cw.at] |= (1<<cw.spin);
cw += wstep;
same[cw.at] |= (1<<cw.spin);
/* printf("%s", display(T * C0));
printf(" %s\n", display(gm[cw.at] * C0)); */
// queueline(T * C0, gm[cw.at] * C0, 0xFF0000FF, 3);
}
int funmode = 0;
hyperpoint corner(cellwalker cw) {
transmatrix T = gm[cw.at];
if(funmode == 2) {
while(cw.at->type != S7) {
cw++;
T = T * calc_relative_matrix(cw.peek(), cw.at, cw.spin);
cw += wstep;
}
return T * C0;
}
return gm[cw.at] * get_corner_position(cw.at, cw.spin+(cw.mirrored?0:1), 3);
}
transmatrix rel(cellwalker cw) {
return calc_relative_matrix(cw.cpeek(), cw.at, cw.spin);
}
ld label_dist = .3;
transmatrix labelpos(hyperpoint h1, hyperpoint h2) {
hyperpoint h = mid(h1, h2);
transmatrix T = rgpushxto0(h);
hyperpoint hx = inverse(T) * h2;
ld alpha = atan2(-hx[1], hx[0]);
return T * xspinpush(alpha + M_PI/2, label_dist);
}
ld widthfactor = 5;
ld label_scale = 1;
void fundamental_marker() {
if(!funmode || !(quotient || euwrap || elliptic)) return;
same.clear();
gm.clear();
same[cwt.at] = 0;
gm[cwt.at] = ggmatrix(cwt.at);
vector<cell*> cells;
cells.push_back(cwt.at);
int tree_edges = 0;
int face_edges = 0;
for(int k=0; k<isize(cells); k++) {
cell *c = cells[k];
for(int i=0; i<c->type; i++) {
cellwalker cw(c, i);
cell *c2 = cw.cpeek();
if(gm.count(c2)) continue;
gm[c2] = gm[c] * rel(cw);
// queueline(gm[c2] * C0, gm[c2] * xspinpush0(ticks, 0.2), 0xFFFFFFFF, 3);
be_connected(cw);
tree_edges++;
cells.push_back(c2);
}
}
while(true) {
int f = face_edges;
for(int k=0; k<isize(cells); k++) {
cell *c = cells[k];
for(int i=0; i<c->type; i++) {
cellwalker cw(c, i);
if(is_connected(cw) && is_connected(cw+1) && !is_connected(cw+wstep-1)) {
face_edges++;
be_connected(cw+wstep-1);
}
}
}
if(f == face_edges) break;
}
cellwalker cw;
int corners = 0;
for(int k=0; k<isize(cells); k++) {
cell *c = cells[k];
for(int i=0; i<c->type; i++) {
cellwalker cw0(c, i);
if(!is_connected(cw0) && !is_connected(cw0+1) && !is_connected(cw0+wstep-1))
corners++, cw = cw0;
}
}
// printf("tree edges = %d, face edges = %d, corners = %d\n", tree_edges, face_edges, corners);
map<cellwalker, cellwalker> next_corner;
map<cellwalker, cellwalker> prev_corner;
for(int ci=0; ci<corners; ci++) {
cellwalker cw0 = cw;
while(true) {
cw++;
if(is_connected(cw)) {
cw += wstep;
cw++;
}
if(!is_connected(cw+1) && !is_connected(cw+wstep-1))
break;
}
next_corner[cw0] = cw;
prev_corner[cw] = cw0;
}
vector<transmatrix> nearm;
for(int ci=0; ci<corners; ci++) {
for(int u=0; u<1; u++) {
cellwalker cw1 = cw+u+wstep+(u-1);
/* printf("%p/%d %p/%d ", cw.at, cw.spin, cw1.at, cw1.spin);
printf("[%d %d %d] ", is_connected(cw), is_connected(cw+1), is_connected(cw+wstep-1));
printf("[%d %d %d] ", is_connected(cw1), is_connected(cw1+1), is_connected(cw1+wstep-1));
printf("%d %d;\n", !!next_corner.count(cw1), !!next_corner.count(cw1+wmirror-1)); */
transmatrix T_here = gm[cw.at] * rel(cw+u);
transmatrix T_there = gm[cw1.at];
nearm.push_back(T_here * inverse(T_there));
}
cw = next_corner[cw];
}
vid.linewidth *= widthfactor;
for(int ci=0; ci<corners; ci++) {
hyperpoint h = corner(cw);
cw = next_corner[cw];
hyperpoint h2 = corner(cw);
for(auto& T: nearm) queueline(T * h, T * h2, color1, 3);
}
for(int ci=0; ci<corners; ci++) {
hyperpoint h = corner(cw);
cw = next_corner[cw];
hyperpoint h2 = corner(cw);
queueline(h, h2, color2, 3);
}
if(0) for(int k=0; k<isize(cells); k++) {
cell *c = cells[k];
for(int i=0; i<c->type; i++) {
cellwalker cw0(c, i);
if(!is_connected(cw0)) continue;
int v = 0;
for(auto& n: nearm) {
queueline(n * gm[cw0.at] * xspinpush0(v, .05), n * gm[cw0.cpeek()] * xspinpush0(v, .05), 0xFF8000FF, 0);
v++;
}
queueline(gm[cw0.at] * C0, gm[cw0.cpeek()] * C0, 0xFF0000FF, 0);
}
}
set<cellwalker> visited;
int id = 0;
for(int ci=0; ci<corners; ci++) {
cellwalker cw1 = (cw+1+wstep);
bool mirrored = false;
if(!next_corner.count(cw1)) cw1 = cw1 + wmirror - 1, mirrored = true;
// visited.insert(next_corner[cw]);
// cellwalker cw2 = next_corner[cw];
if(next_corner[cw] < (mirrored ? next_corner[cw1] : cw1)) {
int mc = (mirrored ? color1 : color2) >> 8;
if(hdist(corner(cw), corner(next_corner[cw])) > 1e-3) {
queuestr(labelpos(corner(cw), corner(next_corner[cw])), label_scale/scalefactor, its(id), mc);
if(mirrored)
queuestr(labelpos(corner(cw1), corner(next_corner[cw1])), label_scale/scalefactor, its(id), mc);
else
queuestr(labelpos(corner(prev_corner[cw1]), corner(cw1)), label_scale/scalefactor, its(id), mc);
id++;
}
}
cw = next_corner[cw];
}
vid.linewidth /= widthfactor;
}
int readArgs() {
using namespace arg;
if(0) ;
else if(argis("-fundamental")) {
shift(); funmode = argi();
shift(); color1 = arghex();
shift(); color2 = arghex();
shift_arg_formula(widthfactor);
shift_arg_formula(label_scale);
shift_arg_formula(label_dist);
}
else return 1;
return 0;
}
auto fundamentalhook = addHook(hooks_args, 100, readArgs) + addHook(hooks_frame, 100, fundamental_marker);
}
}