1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2024-11-18 03:04:48 +00:00
hyperrogue/rogueviz/dhrg/gridmapping.cpp

80 lines
2.3 KiB
C++
Raw Normal View History

2022-07-12 09:12:35 +00:00
// test the conjecture comparing triangulation distances and hyperbolic distances
namespace dhrg {
ld stats[32][3], wstats[32][3];
hyperpoint celltopoint(cell *c) {
return tC0(calc_relative_matrix(c, croot(), C0));
}
void do_analyze_grid(int maxv) {
cell *root = croot();
celllister cl(root, 32, maxv, NULL);
// if this works too slow, use a smaller number
// (you can also use a larger number if you have time of course)
// int rot = 0;
vector<ld> distances[128];
for(cell *c: cl.lst) {
hyperpoint h = celltopoint(c);
ld dd = hdist0(h);
int d = celldist(c);
stats[d][0] ++;
stats[d][1] += dd;
stats[d][2] += dd*dd;
distances[d].push_back(dd);
if(d>0) {
ld alpha[2];
int qalpha = 0;
forCellCM(c2, c) if(celldist(c2) == d) {
hyperpoint h1 = celltopoint(c2);
alpha[qalpha++] = atan2(h1[0], h1[1]);
}
if(qalpha != 2) printf("Error: qalpha = %d\n", qalpha);
ld df = raddif(alpha[0], alpha[1]);
df /= 720._deg;
2022-07-12 09:12:35 +00:00
wstats[d][0] += df;
if(d==2) printf("df == %" PLDF " dd = %" PLDF "\n", df, dd);
wstats[d][1] += df*dd;
wstats[d][2] += df*dd*dd;
}
}
println(hlog, "log(gamma) = ", log(cgi.expansion->get_growth()));
ld lE, dif, lwE;
for(int d=0; d<32; d++) if(stats[d][0]) {
int q = stats[d][0];
if(q != cgi.expansion->get_descendants(d).approx_int()) continue;
ld E = stats[d][1] / q;
ld E2 = stats[d][2] / q;
ld Vr = E2 - E * E;
if(Vr < 0) Vr = 0;
dif = E- lE; lE = E;
ld Vd = d > 1 ? Vr/(d-1) : 0;
ld wE = wstats[d][1];
ld wE2 = wstats[d][2];
ld wVr = wE2 - wE * wE;
print(hlog, format("d=%2d: q = %8d E = %12.8" PLDF " dif = %12.8" PLDF " Vr = %12.8" PLDF " Vr/(d-1)=%12.8" PLDF,
d, q, E, dif, Vr, Vd));
if(0) print(hlog, format(" | <%" PLDF "> ex = %12.8" PLDF " d.ex = %12.8" PLDF " Vr = %12.8" PLDF, wstats[d][0], wE, wE - lwE, wVr));
ld Sigma = sqrt(Vr);
sort(distances[d].begin(), distances[d].end());
if(Sigma) for(int u=1; u<8; u++)
print(hlog, format(" %8.5" PLDF, (distances[d][u * isize(distances[d]) / 8] - E) / Sigma));
println(hlog);
lwE = wE;
}
}
}