1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2025-01-07 16:00:36 +00:00
hyperrogue/rogueviz/ts2.cpp

303 lines
8.3 KiB
C++
Raw Normal View History

2020-03-29 15:38:37 +00:00
#include "../hyper.h"
// Twisted S2xE.
// We use a model with coordinates (r,phi,z), where (r,phi) are the polar coordinates in S2.
// Metric: ds^2 = (dr)^2 + (sin r * dphi)^2 + (dz + K * (1-cos(r)) dphi)^2
// See https://youtu.be/lZCkEuud6aU and https://youtu.be/rfu6m_xGxWY
namespace hr {
EX namespace ts2 {
eGeometry ts2 = eGeometry(-1);
EX bool in() { return geometry == gTS; }
EX ld K = -.9;
EX hyperpoint at = point3(.5, 0, 0);
EX transmatrix camera;
void init() {
ld r = .5;
at = point3(r, 0, 0);
camera = build_matrix(
point3(1, 0, 0),
point3(0, 1/sin(r), K/sin(r)*(cos(r)-1)),
point3(0, 0, 1),
point31(0,0,0)
);
camera = camera * cspin(1, 2, 90*degree);
}
// a dummy map that does nothing
struct hrmap_ts2 : hrmap {
heptagon *origin;
heptagon *getOrigin() override { return origin; }
struct transmatrix relative_matrix(heptagon *h2, heptagon *h1, const hyperpoint& hint) override {
return Id;
}
hrmap_ts2() {
init();
heptagon*& h =origin;
h = tailored_alloc<heptagon> (S7);
h->c7 = newCell(S7, h);
h->distance = 0;
h->dm4 = 0;
h->fieldval = 0;
h->cdata = NULL;
h->alt = NULL;
}
heptagon *create_step(heptagon *parent, int d) override {
parent->c.connect(d, parent, d, false);
return parent;
}
void draw() override {
println(hlog, "at = ", at);
for(int i=0; i<3; i++)
println(hlog, i, ": ", camera * point3(i==0, i==1, i==2));
}
};
EX hrmap* new_map() { return new hrmap_ts2; };
EX hyperpoint christoffel(const hyperpoint at, const hyperpoint velocity, const hyperpoint transported) {
const ld r = at[0];
hyperpoint c = point3(0,0,0);
// const ld r2 = r * r;
const ld K2 = K * K;
const ld sr = sin(r);
// const ld sr2 = sr * sr;
const ld cr = cos(r) - 1;
const ld cr2 = cr * cr;
c[ 0 ] = 0
+ velocity[ 1 ] * transported[ 1 ] * (-K2*(cr) + cos(r))*sr
+ velocity[ 1 ] * transported[ 2 ] * K*sr/2
+ velocity[ 2 ] * transported[ 1 ] * K*sr/2;
c[ 1 ] = 0
+ velocity[ 0 ] * transported[ 1 ] * (K2*cos(r) - K2 - 2*cos(r))/(2*sr)
+ velocity[ 0 ] * transported[ 2 ] * -K/(2*sr)
+ velocity[ 1 ] * transported[ 0 ] * (K2*cos(r) - K2 - 2*cos(r))/(2*sr)
+ velocity[ 2 ] * transported[ 0 ] * -K/(2*sr);
c[ 2 ] = 0
+ velocity[ 0 ] * transported[ 1 ] * K*(K2 - 1)*cr2/(2*sr)
+ velocity[ 0 ] * transported[ 2 ] * K2*(1 - cos(r))/(2*sr)
+ velocity[ 1 ] * transported[ 0 ] * K*(K2 - 1)*cr2/(2*sr)
+ velocity[ 2 ] * transported[ 0 ] * K2*(1 - cos(r))/(2*sr);
return c;
}
void geodesic_step(hyperpoint& at, hyperpoint& velocity) {
auto acc = ts2::christoffel(at, velocity, velocity);
auto at2 = at + velocity / 2;
auto velocity2 = velocity + acc / 2;
auto acc2 = ts2::christoffel(at2, velocity2, velocity2);
at = at + velocity + acc2 / 2;
velocity = velocity + acc;
}
EX bool shift_view(hyperpoint dist) {
if(!in()) return false;
auto tPos = transpose(camera);
hyperpoint h = camera * dist;
int steps = 100;
h /= steps;
for(int i=0; i<steps; i++) {
for(int j=0; j<3; j++)
tPos[j] += christoffel(at, h, tPos[j]);
geodesic_step(at, h);
}
camera = transpose(tPos);
return true;
}
EX bool rotate_view(transmatrix T) {
if(!in()) return false;
camera = camera * inverse(T);
return true;
}
EX void radar() {
hyperpoint a = at;
hyperpoint v = camera * point3(0,0,1) / 100.;
int it;
for(it=0; it<1000; it++) {
geodesic_step(a, v);
// if(a[0] < .1) break;
if(a[0] > .5 && a[0] < .6 && cos(a[1]) > .9 && cos(a[2]) > .9) break;
}
println(hlog, "radar = ", it);
}
void twist() {
for(K = -2; K<=2; K += .1)
for(ld start: {0.5f, 1.f}) {
hyperpoint at = point3(start, 0, 0);
hyperpoint vel = point3(0, 1e-5, 0);
// println(hlog, "simulating");
hyperpoint at1 = at, at2 = at;
int it = 0;
for(; ; it++) {
at2 = at1; at1 = at;
// if(it % 1000 == 0) println(hlog, format("%6d. ", it), at, " vel = ", vel);
geodesic_step(at, vel);
if(at2[0] > at1[0] && at1[0] < at[0]) break;
}
println(hlog, format("%8d. ", it), lalign(40, kz(at)), " vel = ", lalign(40, kz(vel)), " K = ", K);
}
}
int readArgs() {
using namespace arg;
if(0) ;
else if(argis("-ts2")) {
if(ts2 == (eGeometry)(-1)) {
ts2 = (eGeometry) isize(ginf);
ginf.push_back(geometryinfo{
"TS", "none", "TS", "ts", 1, 1, qEXPERIMENTAL | qRAYONLY, giSphere3, 0x31400, {{7, 2}}, eVariation::pure
});
}
set_geometry(ts2);
}
else if(argis("-twist")) {
twist();
exit(1);
}
else return 1;
return 0;
}
auto fundamentalhook = addHook(hooks_args, 100, readArgs);
EX string fragmentshader() {
return
"varying mediump vec4 at;\n"
"uniform mediump vec4 uStart;\n"
"uniform mediump mat4 uLP;\n"
"const float K = float(" + fts(ts2::K) + ");\n"
"const float maxdist = 20.;\n"
"vec4 christoffel(vec4 at, vec4 vel) {\n"
"float r = at.x;\n"
"float K2 = K * K;\n"
"float sr = sin(r);\n"
"float cr = cos(r) - 1.;\n"
"float cr2 = cr * cr;\n"
"vec4 c;\n"
"c[ 0 ] = 0.\n"
"+ vel.y * vel.y * (-K2*(cr) + cos(r))*sr\n"
"+ vel.y * vel.z * K*sr/2.\n"
"+ vel.z * vel.y * K*sr/2.;\n"
"c[ 1 ] = 0."
"+ vel.x * vel.y * (K2*cos(r) - K2 - 2.*cos(r))/(2.*sr)\n"
"+ vel.x * vel.z * -K/(2.*sr)\n"
"+ vel.y * vel.x * (K2*cos(r) - K2 - 2.*cos(r))/(2.*sr)\n"
"+ vel.z * vel.x * -K/(2.*sr);\n"
"c[ 2 ] = 0."
"+ vel.x * vel.y * K*(K2 - 1.)*cr2/(2.*sr)\n"
"+ vel.x * vel.z * K2*(1. - cos(r))/(2.*sr)\n"
"+ vel.y * vel.x * K*(K2 - 1.)*cr2/(2.*sr)\n"
"+ vel.z * vel.x * K2*(1. - cos(r))/(2.*sr);\n"
"return c;}\n"
"void main() {\n"
" mediump vec4 at0 = at;\n"
" at0.y = -at.y;\n"
" at0.xyz = at0.xyz / length(at0.xyz);\n"
" mediump vec4 position = uStart;\n"
" mediump vec4 tangent = uLP * at0;\n"
" tangent = tangent;\n"
" float dist = 0.;\n"
" int iter = 0;"
" while(dist < maxdist && iter < 10000) {"
// we make smaller steps if we are close to the singularities at the poles
" float step = sin(position.x) * .05;"
" dist = dist + step;\n"
" iter++;\n"
" tangent = tangent * step;\n"
" vec4 acc = christoffel(position, tangent);"
" vec4 at2 = position + tangent / 2.;"
" vec4 tangent2 = tangent + acc / 2.;"
" vec4 acc2 = christoffel(at2, tangent2);"
" position = position + tangent + acc2 / 2.;"
" tangent = tangent + acc;\n"
" tangent = tangent / step;\n"
" if(position.x > .5 && position.x < .6 && cos(position.y) > .9 && cos(position.z/2./K) > .9) {\n"
" float bri = float(1. - dist / maxdist);\n"
" int e = 0;\n"
" if(position.x < .51 || position.x > .59) e++;\n"
" if(cos(position.y) < .91) e++;\n"
" if(cos(position.z/2./K) < .91) e++;\n"
" if(e >= 2) bri /= 2.;\n"
" gl_FragColor = vec4(bri, bri, bri, 1.);\n"
" return;"
" }"
" }\n"
" gl_FragColor = vec4(0.,0.,0.,1.);\n"
" }";
}
int ah2 = addHook(ray::hooks_rayshader, 100, [] (string &vsh, string &fsh) { fsh = ts2::fragmentshader(); })
+ addHook(ray::hooks_rayset, 100, [] (shared_ptr<ray::raycaster> o) {
if(!in()) return false;
glUniformMatrix4fv(o->uLP, 1, 0, glhr::tmtogl_transpose3(ts2::camera).as_array());
auto pg = glhr::pointtogl(ts2::at);
glUniform4f(o->uStart, pg[0], pg[1], pg[2], pg[3]);
return true;
})
+ addHook(hooks_newmap, 100, [] () { if(in()) return ts2::new_map(); return (hrmap*) nullptr; })
+ addHook(hooks_rotate_view, 100, rotate_view)
+ addHook(hooks_shift_view, 100, shift_view)
;
EX }
}