hyperrogue/rogueviz/bringris.cpp

983 lines
26 KiB
C++
Raw Normal View History

2020-10-15 14:39:21 +00:00
// non-Euclidean falling block game, implemented using the HyperRogue engine
// Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details
#ifdef BRINGRIS
#define CUSTOM_CAPTION "Bringris"
#define MAXMDIM 4
#define CAP_INV 0
#define CAP_COMPLEX2 0
#define CAP_EDIT 0
#define CAP_BT 0
#define CAP_SOLV 0
#define CAP_THREAD 0
// #define CAP_ZLIB 0
#define CAP_FILES 0
// #define CAP_ANIMATIONS 0
#define CAP_RUG 0
#define CAP_SHOT 0
#define CAP_SVG 0
#define CAP_PNG 0
#define CAP_TOUR 0
#define CAP_IRR 0
#define CAP_CRYSTAL 0
#define CAP_ARCM 0
#define CAP_HISTORY 0
#define CAP_STARTANIM 0
#define CAP_CONFIG 0
#define CAP_SAVE 0
#define CAP_TRANS 0
#ifdef BWEB
#include "../hyperweb.cpp"
#else
#include "../hyper.cpp"
#endif
#endif
#include "../hyper.h"
namespace hr {
namespace bringris {
using code_t = vector<pair<int, int>>;
struct piecedata {
code_t code;
int multi;
int penalty;
int symmetries;
int count;
};
vector<piecedata> piecelist;
bool listed(const vector<cellwalker>& v, cell* c) {
for(auto cw: v) if(cw.at == c) return true;
return false;
}
bool same(const vector<cellwalker>& shape, const vector<cellwalker>& shape2) {
set<cell*> allcells;
if(isize(shape) != isize(shape2)) return false;
for(auto sh: shape) allcells.insert(sh.at);
for(auto sh: shape2) allcells.erase(sh.at);
return allcells.empty();
}
cellwalker flatspin(cellwalker cw, int i) {
cw.spin = gmod(cw.spin + i, cw.at->type - (hybri ? 2 : 0));
return cw;
}
cellwalker add(cellwalker orig, int i, int sym = 0) {
if(prod) {
if(i >= orig.at->type-2) {
if(sym&2) i ^= (orig.at->type-1) ^ (orig.at->type-2);
orig.at = orig.at->cmove(i);
return orig;
}
else {
if(sym&1) i = -i;
return flatspin(orig, i) + wstep;
}
}
return orig + i + wstep;
}
vector<cellwalker> build_from(const code_t& code, cellwalker start, int sym = 0) {
vector<cellwalker> all = {start};
for(auto c: code)
all.push_back(add(all[c.first], c.second, sym));
return all;
}
int penalty(const vector<cellwalker>& shape, const code_t& code) {
int p = 0;
if(prod) {
int bad = shape[0].at->type-1;
for(auto co: code) if(co.second == bad)
p += 1000;
}
map<cell*, int> dists;
for(auto cw: shape) dists[cw.at] = 99;
dists[shape[0].at] = 0;
for(int i=0; i<isize(shape); i++)
for(auto c1: shape)
for(auto c2: shape)
if(neighborId(c1.at, c2.at) != -1)
dists[c2.at] = min(dists[c2.at], dists[c1.at] + 1);
for(auto d: dists) p += d.second * 10;
for(auto c: code) if(c.second == 0 || c.second == 2) p++;
return p;
}
bool builds(const vector<cellwalker>& shape, const code_t& code, int sym = 0) {
for(auto sh: shape) for(int i=0; i<sh.at->type; i++) {
vector<cellwalker> shape2 = build_from(code, cellwalker(sh.at, i), sym);
if(same(shape, shape2))
return true;
}
return false;
}
void generate_shapes_rec(vector<cellwalker>& sofar, code_t& code, int cnt) {
if(isize(sofar) == cnt) {
int p = penalty(sofar, code);
for(auto& pc: piecelist)
if(builds(sofar, pc.code)) {
if(p < pc.penalty) pc.penalty = p, pc.code = code;
pc.multi++;
return;
}
int syms = 0;
for(int i: {0,1,2,3}) if(builds(sofar, code, i)) syms++;
bool vertical = true;
for(auto c: code) if(c.second < 4) vertical = false;
if(vertical) syms *= 2;
if(isize(code) == 0) syms = 1;
piecelist.push_back(piecedata{code, 1, p, syms, 0});
return;
}
for(int i=0; i<isize(sofar); i++)
for(int t=0; t<sofar[i].at->type; t++) {
cellwalker ncw = add(sofar[i], t);
if(listed(sofar, ncw.at)) continue;
code.emplace_back(i, t);
sofar.push_back(ncw);
generate_shapes_rec(sofar, code, cnt);
sofar.pop_back();
code.pop_back();
}
}
void generate_shapes(int cnt) {
vector<cellwalker> cws = { cwt };
code_t co = {};
generate_shapes_rec(cws, co, cnt);
}
void list_all() {
println(hlog, "number of shapes = ", isize(piecelist));
// for(auto sh: piecelist) println(hlog, "multi=", sh.multi, " penalty=", sh.penalty, " syms=", sh.symmetries, " => ", sh.code);
}
vector<cell*> level;
bool pro_game;
int well_size = 10;
int camera = 3;
int facing_mod = 0;
int shape_id, next_shape_id;
cellwalker at;
int move_started;
int move_at;
int completed;
int bricks, cubes;
ld score;
enum eState {
tsPreGame, tsFalling, tsBetween, tsCollect, tsGameover
};
bool paused;
bool explore;
eState state = tsPreGame;
void water_shape() {
auto shape = build_from(piecelist[shape_id].code, at);
for(auto c: shape)
c.at->wall = waSea;
}
set<cell*> to_disappear;
color_t hipso[] = {
0x3030C0,
0x6060FF,
0x9090FF,
0xFFFFFF,
0x008000,
0x40FF00,
0xFFFF00,
0xFF8000,
0xFF0000,
0x800000,
0x400040,
0x500050,
0x600060
};
color_t get_hipso(ld y) {
y += 12;
return hipso[gmod(y, 13)];
}
void draw_shape() {
auto shape = build_from(piecelist[shape_id].code, at);
for(auto c: shape) {
int y = -hybrid::get_where(c.at).second;
c.at->wall = waWaxWall, c.at->landparam = get_hipso(y);
}
}
void remove_shape() {
auto shape = build_from(piecelist[shape_id].code, at);
for(auto c: shape)
c.at->wall = waNone;
}
bool shape_conflict(cellwalker cw) {
auto shape = build_from(piecelist[shape_id].code, cw);
for(auto c: shape)
if(c.at->wall)
return true;
return false;
}
ld current_move_time_limit() {
return 50000 * pow(.9, completed) + 10000. / (1 + completed);
}
int turn_animation = 500;
int collect_animation = 300;
int choose_piece() {
ld total = 0;
int sel = 0;
ld lowest = 100000;
for(auto &p: piecelist)
lowest = min(lowest, p.count * 1. / p.symmetries);
vector<tuple<int,int,ld>> probs;
for(int i=0; i<isize(piecelist); i++) {
auto& p = piecelist[i];
double cnt = p.symmetries * exp(log(.5) * (p.count * 1. / p.symmetries - lowest));
probs.emplace_back(p.symmetries, p.count, cnt);
total += cnt;
if(randd() < cnt / total)
sel = i;
}
// println(hlog, "probs = ", probs);
piecelist[sel].count++;
return sel;
}
void new_piece() {
at.at = hybrid::get_at(hybrid::get_where(at.at).first, -well_size - 1);
shape_id = next_shape_id;
next_shape_id = choose_piece();
if(shape_conflict(at)) {
playSound(cwt.at, "die-bomberbird");
state = tsGameover;
}
else {
draw_shape();
state = tsFalling;
move_started = ticks;
move_at = ticks + current_move_time_limit();
}
}
vector<int> by_level;
bool expert = true;
void find_lines() {
by_level.clear();
// println(hlog, "Removing levels");
for(int z=1; z<=well_size; z++) {
int ct = 0;
for(auto lev: level) {
cell *c = hybrid::get_at(lev, -z);
ct += (c->wall ? 1 : 0);
}
by_level.push_back(ct);
}
// println(hlog, by_level, " / ", isize(level));
int points = 0;
if(expert) {
for(int z=1; z<=well_size; z++) if(by_level[z-1] >= isize(level)) {
points++;
for(auto lev: level) {
cell *c = hybrid::get_at(lev, -z);
to_disappear.insert(c);
}
}
}
else {
int lines_found = 0;
for(int z=1; z<=well_size; z++) {
for(auto lev: level) for(int d=0; d<lev->type; d++) {
cellwalker cw(hybrid::get_at(lev, -z), d);
cellwalker cw0 = cw;
bool filled = true;
do {
if(!cw.at->wall) filled = false;
cw += wstep;
cw = flatspin(cw, lev->type/2);
}
while(cw != cw0);
if(filled) {
lines_found = true;
do {
to_disappear.insert(cw.at);
cw += wstep;
cw = flatspin(cw, lev->type/2);
}
while(cw != cw0);
}
}
}
// println(hlog, "lines found = ", lines_found);
}
if(!to_disappear.empty()) {
move_at = ticks + collect_animation;
state = tsCollect;
score += 10000000. * points * (points+1.) / current_move_time_limit();
completed += points;
playSound(cwt.at, points == 1 ? "pickup-gold" : "orb-mind");
}
}
void disappear_lines() {
for(auto lev: level) {
int nz = 1;
for(int z=1; z<=well_size; z++) {
cell *c1 = hybrid::get_at(lev, -z);
if(!to_disappear.count(c1)) {
cell *c0 = hybrid::get_at(lev, -nz);
c0->wall = c1->wall;
c0->landparam = get_hipso(nz);
nz++;
}
}
while(nz < well_size + camera_level) {
cell *c0 = hybrid::get_at(lev, -nz);
c0->wall = waNone;
nz++;
}
}
to_disappear.clear();
state = tsBetween;
}
void state_loop() {
find_lines();
if(to_disappear.empty()) new_piece();
}
void fallen() {
draw_shape();
bricks++;
cubes += isize(piecelist[shape_id].code)+1;
state = tsBetween;
playSound(cwt.at, "closegate");
score += 20000000. / (current_move_time_limit() * 3 + move_started - ticks);
}
void drop() {
remove_shape();
cellwalker fall = at;
fall.at = fall.at->cmove(fall.at->type-1);
if(shape_conflict(fall))
fallen();
else {
at = fall;
draw_shape();
}
move_at = ticks + current_move_time_limit();
}
void fulldrop() {
remove_shape();
cellwalker fall = at;
int no = 0;
while(true) {
fall.at = fall.at->cmove(fall.at->type-1);
if(shape_conflict(fall)) break;
no++;
}
playSound(cwt.at, "hit-crush2");
// println(hlog, "dropped by ", no);
fall.at = fall.at->cmove(fall.at->type-2);
at = fall;
draw_shape();
if(!no) fallen();
}
int last_adjust, when_t;
transmatrix tView, pView;
cell* ncenter;
void verify_matrix(transmatrix T) {
vector<ld> ver;
for(int i=0; i<3; i++)
for(int j=0; j<3; j++) {
ld a = T[0][i] * T[0][j] + T[1][i]*T[1][j] - T[2][i] * T[2][j];
ver.push_back(kz(a));
}
println(hlog, ver);
}
void set_tview(transmatrix T) {
View = T * tView;
transmatrix rel = pView * inverse(View);
fixmatrix(rel);
centerover = ncenter;
optimizeview();
ncenter = centerover;
tView = View;
tView = spin(135*degree - 90*degree*-(at.spin+facing_mod));
pView = rel * tView;
when_t = ticks + turn_animation;
}
void rotate_block(int d) {
remove_shape();
cellwalker at1 = flatspin(at, d);
if(!shape_conflict(at1)) {
at = at1;
facing_mod -= (currentmap->gamestart()->type & 1 ? 2 : 1)*d;
// set_tview(spin(d*72*degree));
}
draw_shape();
}
void shift_block(int k) {
int t = currentmap->gamestart()->type;
if(prod) t -= 2;
if(t&1) {
k = gmod(k+facing_mod, 10);
int dir = k / 2;
int kspin = (k&1?3:2) - dir;
remove_shape();
cellwalker at1 = flatspin(flatspin(at, dir) + wstep, kspin);
ld angle = (dir*2-facing_mod) * 36 * degree;
if(!shape_conflict(at1)) {
at = at1;
set_tview(spin(-angle) * ypush(-cgi.tessf) * spin(angle));
facing_mod += (k&1?-1:1);
}
draw_shape();
}
else {
k = gmod(k+facing_mod, t);
int dir = k;
int kspin = (t/2) - dir;
remove_shape();
cellwalker at1 = flatspin(at, dir);
ld dist = hdist0(currentmap->adj(at1.at, at1.spin) * C0);
at1 = flatspin(at1 + wstep, kspin);
ld angle = (dir-facing_mod) * 90 * degree;
if(!shape_conflict(at1)) {
// playSound(cwt.at, "hit-crush1");
at = at1;
set_tview(spin(-angle) * ypush(-dist) * spin(angle));
}
else playSound(cwt.at, "hit-crush3");
draw_shape();
}
}
int camera_level;
ld ang = 0, cur_ang = 0;
int lti;
void create_matrices() {
dq::clear_all();
make_actual_view();
dq::enqueue_by_matrix_c(centerover, cview());
current_display->all_drawn_copies.clear();
int id = 0;
while(!dq::drawqueue_c.empty()) {
auto& p = dq::drawqueue_c.front();
cell*& c = p.first;
shiftmatrix& V = p.second;
current_display->all_drawn_copies[c].push_back(V);
gmatrix[p.first] = p.second;
if(id < (cur_ang ? 100 : 500)) {
for(int i=0; i<c->type-2; i++) {
cell *c1 = c->cmove(i);
dq::enqueue_by_matrix_c(c1, optimized_shift(V * currentmap->adj(c, i)));
}
}
dq::drawqueue_c.pop();
id++;
}
}
transmatrix smooth;
void draw_wirecube_at(const transmatrix& smoo, cell *c, int zlev, color_t col) {
auto where_c = hybrid::get_where(c);
auto c_camera = hybrid::get_at(where_c.first, -camera_level);
for(const shiftmatrix& V: current_display->all_drawn_copies[c_camera]) {
shiftmatrix VA = shiftless(smoo * V.T, cgi.plevel * (where_c.second - zlev));
for(int i=0; i<c->type; i++)
queuepolyat(VA, cgi.shWireframe3D[i], 0, PPR::SUPERLINE).outline = col;
}
}
void draw_piece(int zlev, int id) {
sightranges[geometry] *= 100;
initquickqueue();
auto shape = build_from(piecelist[id].code, at);
auto where_at = hybrid::get_where(at.at);
vid.linewidth *= 3;
for(auto c: shape) {
auto where_c = hybrid::get_where(c.at);
color_t levels[4] = {color_t(0xFFFFFFFFF), color_t(0xFFFF00FF), color_t(0xFF8000FF), color_t(0xFF0000FF)};
draw_wirecube_at(smooth, c.at, zlev, levels[where_at.second-where_c.second]);
}
vid.linewidth /= 3;
quickqueue();
glflush();
sightranges[geometry] /= 100;
}
void draw_holes(int zlev) {
sightranges[geometry] *= 100;
initquickqueue();
if(state == tsFalling) remove_shape();
for(auto lev: level) {
bool covered = false;
for(int z=well_size; z>=1; z--) {
cell *c1 = hybrid::get_at(lev, -z);
if(c1->wall) covered = true;
else if(covered) {
vid.linewidth *= 4;
draw_wirecube_at(Id, c1, zlev, (get_hipso(z) << 8) | 0xFF);
vid.linewidth /= 4;
}
}
}
if(state == tsFalling) draw_shape();
quickqueue();
sightranges[geometry] /= 100;
}
void start_new_game();
void draw_screen(int xstart, bool show_next) {
int steps = camera_level - (-hybrid::get_where(at.at).second);
if(state != tsFalling) steps = camera_level - (well_size + 1);
dynamicval<display_data> ccd(*current_display);
current_display->xmax = xstart * 1. / vid.xres;
if(explore) {
gamescreen(0);
mouseaim_sensitivity = 0.01;
camera_speed = 2;
smooth_scrolling = true;
}
else {
mouseaim_sensitivity = 0;
NLP = Id;
View = pView;
ld lv = -cgi.plevel * steps;
shift_view(ztangent(lv));
rotate_view(cspin(1, 2, cur_ang));
shift_view(ztangent(cgi.plevel * 6));
centerover = ncenter;
int zlev = hybrid::get_where(centerover).second;
make_actual_view();
create_matrices();
// anims::moved();
auto adc = std::move(current_display->all_drawn_copies);
if(state == tsCollect) for(cell *c: to_disappear) c->landparam = rand() & 0xFFFFFF;
if(state == tsFalling && !explore && !cur_ang) remove_shape();
gamescreen(0);
if(state == tsFalling && !explore && !cur_ang) draw_shape();
current_display->all_drawn_copies = std::move(adc);
if(anyshiftclick) draw_holes(zlev);
if(state == tsFalling && !explore && !cur_ang) draw_piece(zlev, shape_id);
if(show_next) {
dynamicval<display_data> ccd(*current_display);
current_display->xmin = (xstart + vid.fsize) * 1. / vid.xres;
current_display->xmax = (vid.xres - vid.fsize) * 1. / vid.xres;
current_display->ymin = (vid.fsize * 18) * 1. / vid.yres;
current_display->ymax = (vid.fsize * (18+8)) * 1. / vid.yres;
calcparam();
draw_piece(zlev, next_shape_id);
}
if(state == tsBetween) state_loop();
if(state == tsCollect && ticks >= move_at)
disappear_lines();
if(ticks >= move_at && state == tsFalling && pro_game) {
drop();
}
View = pView;
centerover = ncenter;
NLP = Id;
}
}
void run() {
clearMessages();
if(ang < cur_ang) {
cur_ang -= (ticks - lti) / 1000.;
if(cur_ang < ang) cur_ang = ang;
}
if(ang > cur_ang) {
cur_ang += (ticks - lti) / 1000.;
if(cur_ang > ang) cur_ang = ang;
}
lti = ticks;
if(explore) ;
else if(ticks > when_t) {
pView = tView;
View = pView;
smooth = Id;
}
else {
ld part = (ticks - last_adjust) * 1. / (when_t - last_adjust);
transmatrix T = pView * inverse(tView);
hyperpoint vec = inverse_exp(shiftless(tC0(T)));
transmatrix Tspin = gpushxto0(tC0(T)) * T;
ld alpha = atan2(Tspin*xpush0(1));
pView = spin(alpha * part) * gpushxto0(direct_exp(vec*part)) * pView;
fixmatrix(pView);
smooth = tView * inverse(pView);
}
last_adjust = ticks;
ray::want_use = 2;
sightranges[geometry] = 50;
vid.cells_drawn_limit = 1;
cmode = sm::NORMAL | sm::CENTER;
int xstart = vid.xres - vid.fsize * 10;
getcstat = '-';
bool show_next = state != tsGameover && state != tsPreGame && !paused;
draw_screen(xstart, show_next);
calcparam();
for(int i=0; i<isize(by_level); i++) {
displaystr(xstart + vid.fsize, vid.yres - vid.fsize * (i+2), 0, vid.fsize, its(by_level[i]), get_hipso(i+1), 0);
}
displaystr(xstart + vid.fsize, vid.yres - vid.fsize * 1, 0, vid.fsize, its(isize(level)), winf[waBarrier].color, 0);
if(state != tsPreGame) {
displaystr(xstart + vid.fsize, vid.yres - vid.fsize * 16, 0, vid.fsize, "LEVELS " + its(completed), winf[waBarrier].color, 0);
displaystr(xstart + vid.fsize, vid.yres - vid.fsize * 15, 0, vid.fsize, "BRICKS " + its(bricks), winf[waBarrier].color, 0);
displaystr(xstart + vid.fsize, vid.yres - vid.fsize * 14, 0, vid.fsize, "CUBES " + its(cubes), winf[waBarrier].color, 0);
if(pro_game)
displaystr(xstart + vid.fsize, vid.yres - vid.fsize * 13, 0, vid.fsize, "SCORE " + fts(int(score)), winf[waBarrier].color, 0);
}
if(show_next)
displaystr(xstart + vid.fsize, vid.yres - vid.fsize * 27, 0, vid.fsize, "NEXT:", winf[waBarrier].color, 0);
bool in_menu = !show_next && !explore;
if(explore) {
int xx = (xstart + vid.xres) / 2;
if(displayButtonS(xx, vid.fsize * 2, "backspace", 0xFFFFFFFF, 8, vid.fsize)) getcstat = SDLK_BACKSPACE;
if(displayButtonS(xx, vid.fsize * 3, "to stop", 0xFFFFFFFF, 8, vid.fsize)) getcstat = SDLK_BACKSPACE;
if(displayButtonS(xx, vid.fsize * 4, "exploring", 0xFFFFFFFF, 8, vid.fsize)) getcstat = SDLK_BACKSPACE;
}
if(in_menu) {
int xx = (xstart + vid.xres) / 2;
if(paused) {
if(displayButtonS(xx, vid.fsize * 2, "CONTINUE", 0xFFFFFFFF, 8, vid.fsize)) getcstat = 'p';
}
else if(state == tsGameover) {
displayButtonS(xx, vid.fsize * 2, "game over", 0xFFFFFFFF, 8, vid.fsize);
}
if(displayButtonS(xx, vid.fsize * 4, "NEW GAME", 0xFFFFFFFF, 8, vid.fsize)) getcstat = 'n';
if(displayButtonS(xx, vid.fsize * 6, "EXPERT GAME", 0xFFFFFFFF, 8, vid.fsize)) getcstat = 'x';
if(state != tsPreGame)
if(displayButtonS(xx, vid.fsize * 8, "EXPLORE", 0xFFFFFFFF, 8, vid.fsize)) getcstat = 'e';
if(!ISWEB) {
if(displayButtonS(xx, vid.fsize * 10, "QUIT", 0xFFFFFFFF, 8, vid.fsize)) getcstat = 'q';
}
else if(state == tsGameover)
if(displayButtonS(xx, vid.fsize * 10, "TWEET", 0xFFFFFFFF, 8, vid.fsize)) getcstat = 't';
}
keyhandler = [xstart, in_menu] (int sym, int uni) {
if(explore) handlePanning(sym, uni);
if(explore && sym == SDLK_BACKSPACE)
explore = false;
if(sym != 13)
dialog::handleNavigation(sym, uni);
if(in_menu && sym == 'q' && !ISWEB) exit(0);
if(sym == '-') {
int ax = mousex * 3 / xstart;
if(ax > 3) ax = 3;
int ay = mousey * 3 / vid.yres;
if(ay > 2) ay = 2;
sym = uni = "-w-\ra d\r-s-\r" [ax+4*ay];
}
if(state == tsFalling && !paused) {
int t = currentmap->gamestart()->type;
if(t & 1) {
if(sym == 'd') rotate_block(1);
if(sym == 's') rotate_block(-1);
for(int k=0; k<10; k++)
if(sym == "cxzaqwerfv"[k])
shift_block(k);
}
else {
/*
if(sym == 'q') rotate_block(1);
if(sym == 'e') rotate_block(-1);
*/
for(int k=0; k<4; k++)
if(sym == "sawd"[k])
shift_block(k);
}
if(sym == ' ') drop();
if(sym == 13) fulldrop();
}
// if(sym == 'k') ang = 0;
// if(sym == 'l') ang = 45 * degree;
if(sym == 'p') {
if(!paused) move_at = move_at - ticks;
paused = !paused;
if(!paused) move_at = move_at - ticks;
explore = false;
}
if(sym == 't' && state == tsGameover) {
const vector<const char*> emoji =
{"😀","😎","👽","🤖","😺","🎩","🎓","👑","💍","🐯","🦁","🐮","🐷","🐽","🐸","🐙","🐵","🐦","🐧","🐔","🐒","🙉","🙈","🐣","🐥","🐺","🐗","🐴","🦄","🐝","🐛","🐢","🦀","🦂","🕷","🐜","🐞","🐌","🐠","🐟","🐡","🐬","🐋","🐊","🐆","🐘","🐫","🐪","🐄","🐂","🐃","🐏","🐑","🐀","🐁","🐓","🦃","🐉","🐾","🐿","🐇","🐈","🐩","🐕","🐲","🌵","🍁","🌻","🌎","⭐️","⚡️","🔥","❄️","☔️","☂️","💧","🍏","🍎","🍐","🍋","🍌","🍉","🍇","🌶","🍅","🍍","🍑","🍈","🍓","🌽","🍠","🍯","🍞","🍗","🧀","🍖","🍤","🌯","🌮","🍝","🍕","🌭","🍟","🍔","⚽️","🎱","🏆","🎪","🎲","🎳","🚗","🚕","🚙","🏎","⛺️","","🕹","💾","☎️","","🔦","💡","💰","💎","🔨","💣","🔑","❤️","🔔"};
string out;
if(pro_game) {
out = "Got " + its(score) + " points for completing " + its(completed) + " levels in #Bringris!";
}
else if(completed) {
out = "Used " + its(bricks) + " blocks to complete " + its(completed) + " levels in #Bringris!";
}
else {
out = "Dropped " + its(bricks) + " blocks in #Bringris!";
}
unsigned hash = time(NULL) / 600;
for(char c: out) hash = 171 * hash + c;
std::mt19937 invr;
invr.seed(hash);
out += " ";
for(int i=0; i<4; i++)
out += emoji[invr() % isize(emoji)];
// println(hlog, out);
#if ISWEB
EM_ASM({
var tweetbegin = 'https://twitter.com/intent/tweet?text=';
var tweettxt = UTF8ToString($0, $1);
var finaltweet = tweetbegin +encodeURIComponent(tweettxt) + "&url=https://zenorogue.itch.io/bringris";
window.open(finaltweet,'_blank');
}, out.c_str(), isize(out));
#endif
}
if(in_menu && sym == 'e') {
explore = !explore;
}
if(in_menu && sym == 'n') {
start_new_game();
paused = false;
explore = false;
pro_game = false;
playSound(cwt.at, "elementalgem");
}
if(in_menu && sym == 'x') {
start_new_game();
paused = false;
explore = false;
pro_game = true;
playSound(cwt.at, "elementalgem");
}
#if CAP_SHOT
if(sym == ']') {
static int id = 0;
perfect_linewidth = 0;
shot::shot_aa = 2;
vid.linewidth *= 2;
shot::take(format("bringris-%04d.png", id++), [] { draw_screen(vid.xres, false); });
vid.linewidth /= 2;
}
#endif
};
}
void start_new_game() {
for(auto& p: piecelist) p.count = 0;
for(auto lev: level) for(int z=0; z<=camera_level+1; z++) {
cell *c = hybrid::get_at(lev, -z);
setdist(c, 7, nullptr);
c->item = itNone;
c->land = laCanvas;
if(z == 0)
c->wall = waBarrier, c->land = laBarrier;
else if(z <= camera_level)
c->wall = waNone;
else
c->wall = waWaxWall, c->land = laCanvas, c->landparam = 0xC000C0;
}
centerover = hybrid::get_at(level[0], -camera_level);
cwt.at = centerover;
ncenter = hybrid::get_at(level[0], -camera_level);
at = hybrid::get_at(level[0], -well_size - 1);
next_shape_id = choose_piece();
state = tsBetween;
NLP = Id;
tView = pView = in_h2xe() ? spin(135*degree) : spin(90*degree);
completed = 0;
bricks = 0;
cubes = 0;
score = 0;
}
void create(int i) {
if(!prod) {
println(hlog, "need product geometry");
exit(1);
}
level = PIU(currentmap->allcells());
generate_shapes(1);
generate_shapes(2);
generate_shapes(3);
generate_shapes(4);
list_all();
// println(hlog, "level size = ", isize(level));
camera_level = well_size + i + camera;
playermoved = false;
ray::want_use = 2;
ray::exp_decay_poly = 200;
mapeditor::drawplayer = false;
// sightranges[geometry] = 1;
pushScreen(run);
vid.fov = 90;
vid.plevel_factor = 0.5;
// vid.grid = true;
mouseaim_sensitivity = 0;
showstartmenu = false;
start_new_game();
state = tsPreGame;
}
int args() {
using namespace arg;
if(0) ;
else if(argis("-list")) {
PHASEFROM(3);
start_game();
shift(); int i = argi();
generate_shapes(i);
list_all();
}
else if(argis("-bringris")) {
PHASEFROM(3);
start_game();
shift(); int i = argi();
create(i);
}
else return 1;
return 0;
}
auto hooks =
addHook(hooks_args, 100, args);
#ifdef BRINGRIS
auto hook1=
addHook(hooks_config, 100, [] {
if(arg::curphase == 2) {
stop_game_and_switch_mode(rg::nothing);
using namespace fieldpattern;
current_extra = 2;
auto& gxcur = fgeomextras[current_extra];
while(isize(gxcur.primes) < 1) nextPrime(gxcur);
fgeomextras[current_extra].current_prime_id = 0;
enableFieldChange();
set_geometry(gFieldQuotient);
gp::param = gp::loc(1, 1);
set_variation(eVariation::unrectified);
set_geometry(gProduct);
start_game();
create(4);
vid.texture_step = 8;
}
});
#endif
}
}