1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2024-12-19 07:20:25 +00:00
hyperrogue/rogueviz/balls.cpp

170 lines
4.3 KiB
C++
Raw Normal View History

#include "rogueviz.h"
/** A physics visualization of balls in a shell.
*
* Compile with HyperRogue, enable a 3D geometry (e.g. Nil), and watch.
* This is not configurable yet... you may need to manually change the gravity direction, or the number of balls
* (it is not optimized, and it does not work in real time with the default number of balls).
*/
namespace rogueviz {
struct ball {
hyperpoint at;
hyperpoint vel;
};
vector<ball> balls;
ld r_small_ball = .1;
ld r_big_ball = 1;
hpcshape shSmallBall, shBigBall, shShell;
bool init = false;
void initialize() {
init = true;
cgi.make_ball(shSmallBall, r_small_ball, 2);
cgi.make_ball(shBigBall, r_big_ball, 4);
cgi.bshape(shShell, PPR::WALL);
shShell.flags |= POLY_TRIANGLES;
auto pt = [] (int i, int j) {
cgi.hpcpush(direct_exp(cspin(0, 2, -30*degree) * cspin(0, 2, 90*degree) * cspin(0, 1, j * degree) * cspin(0, 2, i * M_PI / 2 / 16) * ztangent(r_big_ball)));
};
for(int i=0; i<16; i++)
for(int j=0; j<360; j++) {
pt(i, j);
pt(i, j+1);
pt(i+1, j);
pt(i, j+1);
pt(i+1, j);
pt(i+1, j+1);
}
cgi.finishshape();
cgi.extra_vertices();
for(int a=-3; a<=3; a++)
for(int b=-3; b<=3; b++)
for(int c=-3; c<=3; c++)
{
hyperpoint h = point3(0.21*a + 1e-2, 0.21*b, 0.21*c);
if(hypot_d(3, h) > r_big_ball - r_small_ball) continue;
transmatrix T = rgpushxto0(direct_exp(h));
balls.emplace_back(ball{T*C0, T*ztangent(1e-3)});
}
}
bool draw_balls(cell *c, const transmatrix& V) {
if(!init) initialize();
if(c == currentmap->gamestart()) {
for(auto& b: balls)
queuepoly(V * rgpushxto0(b.at), shSmallBall, 0xFFFFFFFF);
queuepoly(Id, shShell, 0x0000F0FF);
}
return false;
}
ld inner(hyperpoint a, hyperpoint b) {
ld s = a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
if(hyperbolic) return s - a[3] * b[3];
if(sphere) return s + a[3] * b[3];
return s;
}
void geodesic_steps(hyperpoint& at, hyperpoint& vel, int qty) {
if(nonisotropic) {
vel /= qty;
for(int i=0; i<qty; i++)
nisot::geodesic_step(at, vel);
vel *= qty;
}
else {
ld d = sqrt(inner(vel, vel));
tie(at, vel) = make_pair(
at * cos_auto(d) + vel * sin_auto(d)/d,
vel * cos_auto(d) - at * sin_auto(d) * sig(3) * d
);
}
}
ld elastic_in = .2;
ld elastic_out = .2;
ld gravity = 1;
bool turn(int delta) {
for(int i=0; i<delta; i++) {
for(auto& b: balls) {
/* gravity direction: z */
b.vel += ctangent(2, 1e-6) * gravity;
geodesic_steps(b.at, b.vel, 1);
if(!nonisotropic && !euclid) {
ld e = sqrt(abs(inner(b.at, b.at)));
b.at /= e;
ld e2 = inner(b.at, b.vel) * sig(3);
b.vel -= b.at * e2;
}
hyperpoint v = inverse_exp(b.at);
ld d = hypot_d(3, v);
ld rbs = r_big_ball - r_small_ball;
if(d > rbs) {
hyperpoint c = C0, ve = v * rbs / d;
geodesic_steps(c, ve, 20);
hyperpoint ort = ve / d;
transmatrix T = gpushxto0(b.at);
b.vel -= inner(T*b.vel, T*ort) * ort * (1 + elastic_out);
b.at = c;
if(!nonisotropic && !euclid) {
ld e2 = inner(b.at, b.vel) * sig(3);
b.vel -= b.at * e2;
}
}
}
/* This is not optimized. It should use a partition of the space,
* to tell which balls have a chance to touch each other. */
for(auto& b1: balls)
for(auto& b2: balls) {
if(&b2 == &b1) break;
hyperpoint dif = inverse_exp(gpushxto0(b1.at) * b2.at);
ld d = hypot_d(3, dif);
if(d < r_small_ball * 2) {
hyperpoint ort1 = (dif / d);
ld vel1 = +inner(gpushxto0(b1.at) * b1.vel, ort1);
hyperpoint ort2 = inverse_exp(gpushxto0(b2.at) * b1.at) / d;
ld vel2 = +inner(gpushxto0(b2.at) * b2.vel, ort2);
ld vels = vel1 + vel2;
if(vels < 0) continue;
vels *= (1 + elastic_in) / 2;
b1.vel -= rgpushxto0(b1.at) * (vels * ort1);
b2.vel -= rgpushxto0(b2.at) * (vels * ort2);
}
}
}
return false;
}
auto celldemo = addHook(hooks_drawcell, 100, draw_balls) +
addHook(shmup::hooks_turn, 100, turn);
}