gnss-sdr/src/tests/system-tests/position_test.cc

1009 lines
47 KiB
C++

/*!
* \file position_test.cc
* \brief This class implements a test for the validation of computed position.
* \authors <ul>
* <li> Carles Fernandez-Prades, 2016. cfernandez(at)cttc.es
* <li> Javier Arribas, 2018. jarribas(at)cttc.es
* </ul>
*
*
* -----------------------------------------------------------------------------
*
* GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
* This file is part of GNSS-SDR.
*
* Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors)
* SPDX-License-Identifier: GPL-3.0-or-later
*
* -----------------------------------------------------------------------------
*/
#include "MATH_CONSTANTS.h"
#include "acquisition_msg_rx.h"
#include "concurrent_map.h"
#include "concurrent_queue.h"
#include "control_thread.h"
#include "file_configuration.h"
#include "geofunctions.h"
#include "gnss_sdr_filesystem.h"
#include "gnss_sdr_flags.h"
#include "gnuplot_i.h"
#include "in_memory_configuration.h"
#include "position_test_flags.h"
#include "rtklib_solver_dump_reader.h"
#include "signal_generator_flags.h"
#include "spirent_motion_csv_dump_reader.h"
#include "test_flags.h"
#include "tracking_tests_flags.h" // acquisition resampler
#include <armadillo>
#include <boost/exception/diagnostic_information.hpp>
#include <boost/exception/exception.hpp>
#include <glog/logging.h>
#include <gtest/gtest.h>
#include <matio.h>
#include <algorithm>
#include <array>
#include <chrono>
#include <cmath>
#include <fstream>
#include <iomanip>
#include <numeric>
#include <thread>
#if GFLAGS_OLD_NAMESPACE
namespace gflags
{
using namespace google;
}
#endif
DEFINE_int32(num_channels, 11, "Number of channels");
// For GPS NAVIGATION (L1)
Concurrent_Queue<Gps_Acq_Assist> global_gps_acq_assist_queue;
Concurrent_Map<Gps_Acq_Assist> global_gps_acq_assist_map;
class PositionSystemTest : public ::testing::Test
{
public:
int configure_generator();
int generate_signal();
int configure_receiver();
int run_receiver();
void check_results();
bool save_mat_xy(std::vector<double>* x, std::vector<double>* y, std::string filename);
bool save_mat_x(std::vector<double>* x, std::string filename);
std::string config_filename_no_extension;
private:
std::string generator_binary;
std::string p1;
std::string p2;
std::string p3;
std::string p4;
std::string p5;
std::string p6;
const double baseband_sampling_freq = static_cast<double>(FLAGS_fs_gen_sps);
std::string filename_rinex_obs = FLAGS_filename_rinex_obs;
std::string filename_raw_data = FLAGS_filename_raw_data;
void print_results(const arma::mat& R_eb_enu) const;
std::shared_ptr<InMemoryConfiguration> config;
std::shared_ptr<FileConfiguration> config_f;
std::string generated_kml_file;
std::chrono::time_point<std::chrono::system_clock> start;
std::chrono::time_point<std::chrono::system_clock> end;
};
int PositionSystemTest::configure_generator()
{
// Configure signal generator
generator_binary = FLAGS_generator_binary;
p1 = std::string("-rinex_nav_file=") + FLAGS_rinex_nav_file;
if (FLAGS_dynamic_position.empty())
{
p2 = std::string("-static_position=") + FLAGS_static_position + std::string(",") + std::to_string(std::min(FLAGS_duration * 10, 3000));
if (FLAGS_duration > 300)
{
std::cout << "WARNING: Duration has been set to its maximum value of 300 s\n";
}
}
else
{
p2 = std::string("-obs_pos_file=") + std::string(FLAGS_dynamic_position);
}
p3 = std::string("-rinex_obs_file=") + FLAGS_filename_rinex_obs; // RINEX 2.10 observation file output
p4 = std::string("-sig_out_file=") + FLAGS_filename_raw_data; // Baseband signal output file. Will be stored in int8_t IQ multiplexed samples
p5 = std::string("-sampling_freq=") + std::to_string(baseband_sampling_freq); // Baseband sampling frequency [MSps]
if (FLAGS_CN0_dBHz > 100.0)
{
p6 = std::string("-CN0_dBHz=45");
}
else
{
p6 = std::string("-CN0_dBHz=") + std::to_string(FLAGS_CN0_dBHz);
}
return 0;
}
int PositionSystemTest::generate_signal()
{
pid_t wait_result;
int child_status;
char* const parmList[] = {&generator_binary[0], &generator_binary[0], &p1[0], &p2[0], &p3[0], &p4[0], &p5[0], &p6[0], nullptr};
int pid;
if ((pid = fork()) == -1)
{
perror("fork error");
}
else if (pid == 0)
{
execv(&generator_binary[0], parmList);
std::cout << "Return not expected. Must be an execv error. Does " << generator_binary << " exist?\n";
std::terminate();
}
wait_result = waitpid(pid, &child_status, 0);
if (wait_result == -1)
{
perror("waitpid error");
}
return 0;
}
int PositionSystemTest::configure_receiver()
{
if (FLAGS_config_file_ptest.empty())
{
config = std::make_shared<InMemoryConfiguration>();
const int sampling_rate_internal = baseband_sampling_freq;
const int number_of_taps = 11;
const int number_of_bands = 2;
const float band1_begin = 0.0;
const float band1_end = 0.48;
const float band2_begin = 0.52;
const float band2_end = 1.0;
const float ampl1_begin = 1.0;
const float ampl1_end = 1.0;
const float ampl2_begin = 0.0;
const float ampl2_end = 0.0;
const float band1_error = 1.0;
const float band2_error = 1.0;
const int grid_density = 16;
const float zero = 0.0;
const int number_of_channels = FLAGS_num_channels;
const int in_acquisition = 1;
const float threshold = 2.5;
const float doppler_max = 5000.0;
const float doppler_step = 250.0;
const float pfa = 0.0;
const float pfa_second_step = 0.0;
const int max_dwells = 10;
const int coherent_integration_time_ms = 1;
const float pll_bw_hz = 35.0;
const float dll_bw_hz = 1.5;
const float early_late_space_chips = 0.5;
const float early_late_space_narrow_chips = 0.1;
const float pll_bw_narrow_hz = 15.0;
const float dll_bw_narrow_hz = 1.5;
const int extend_correlation_symbols = FLAGS_extend_correlation_symbols; // defaults to 1
const int display_rate_ms = 500;
const int output_rate_ms = 100;
config->set_property("GNSS-SDR.internal_fs_sps", std::to_string(sampling_rate_internal));
// Enable automatic resampler for the acquisition, if required
if (FLAGS_use_acquisition_resampler == true)
{
config->set_property("GNSS-SDR.use_acquisition_resampler", "true");
}
config->set_property("GNSS-SDR.GPS_banned_prns", std::to_string(1));
// Set the assistance system parameters
config->set_property("GNSS-SDR.SUPL_read_gps_assistance_xml", "false");
config->set_property("GNSS-SDR.SUPL_gps_enabled", "false");
config->set_property("GNSS-SDR.SUPL_gps_ephemeris_server", "supl.google.com");
config->set_property("GNSS-SDR.SUPL_gps_ephemeris_port", std::to_string(7275));
config->set_property("GNSS-SDR.SUPL_gps_acquisition_server", "supl.google.com");
config->set_property("GNSS-SDR.SUPL_gps_acquisition_port", std::to_string(7275));
config->set_property("GNSS-SDR.SUPL_MCC", std::to_string(244));
config->set_property("GNSS-SDR.SUPL_MNC", std::to_string(5));
config->set_property("GNSS-SDR.SUPL_LAC", "0x59e2");
config->set_property("GNSS-SDR.SUPL_CI", "0x31b0");
// Set the Signal Source
config->set_property("SignalSource.implementation", "File_Signal_Source");
config->set_property("SignalSource.filename", "./" + filename_raw_data);
config->set_property("SignalSource.sampling_frequency", std::to_string(sampling_rate_internal));
config->set_property("SignalSource.item_type", "ibyte");
config->set_property("SignalSource.samples", std::to_string(zero));
// Set the Signal Conditioner
config->set_property("SignalConditioner.implementation", "Signal_Conditioner");
config->set_property("DataTypeAdapter.implementation", "Ibyte_To_Complex");
config->set_property("InputFilter.implementation", "Freq_Xlating_Fir_Filter");
config->set_property("InputFilter.dump", "false");
config->set_property("InputFilter.input_item_type", "gr_complex");
config->set_property("InputFilter.output_item_type", "gr_complex");
config->set_property("InputFilter.taps_item_type", "float");
config->set_property("InputFilter.number_of_taps", std::to_string(number_of_taps));
config->set_property("InputFilter.number_of_bands", std::to_string(number_of_bands));
config->set_property("InputFilter.band1_begin", std::to_string(band1_begin));
config->set_property("InputFilter.band1_end", std::to_string(band1_end));
config->set_property("InputFilter.band2_begin", std::to_string(band2_begin));
config->set_property("InputFilter.band2_end", std::to_string(band2_end));
config->set_property("InputFilter.ampl1_begin", std::to_string(ampl1_begin));
config->set_property("InputFilter.ampl1_end", std::to_string(ampl1_end));
config->set_property("InputFilter.ampl2_begin", std::to_string(ampl2_begin));
config->set_property("InputFilter.ampl2_end", std::to_string(ampl2_end));
config->set_property("InputFilter.band1_error", std::to_string(band1_error));
config->set_property("InputFilter.band2_error", std::to_string(band2_error));
config->set_property("InputFilter.filter_type", "lowpass");
config->set_property("InputFilter.grid_density", std::to_string(grid_density));
config->set_property("InputFilter.sampling_frequency", std::to_string(sampling_rate_internal));
config->set_property("InputFilter.IF", std::to_string(zero));
config->set_property("Resampler.implementation", "Pass_Through");
config->set_property("Resampler.dump", "false");
config->set_property("Resampler.item_type", "gr_complex");
config->set_property("Resampler.sample_freq_in", std::to_string(sampling_rate_internal));
config->set_property("Resampler.sample_freq_out", std::to_string(sampling_rate_internal));
// Set the number of Channels
config->set_property("Channels_1C.count", std::to_string(number_of_channels));
config->set_property("Channels.in_acquisition", std::to_string(in_acquisition));
config->set_property("Channel.signal", "1C");
// Set Acquisition
config->set_property("Acquisition_1C.implementation", "GPS_L1_CA_PCPS_Acquisition");
config->set_property("Acquisition_1C.item_type", "gr_complex");
config->set_property("Acquisition_1C.coherent_integration_time_ms", std::to_string(coherent_integration_time_ms));
config->set_property("Acquisition_1C.threshold", std::to_string(threshold));
config->set_property("Acquisition_1C.pfa", std::to_string(pfa));
config->set_property("Acquisition_1C.pfa_second_step", std::to_string(pfa_second_step));
config->set_property("Acquisition_1C.doppler_max", std::to_string(doppler_max));
config->set_property("Acquisition_1C.doppler_step", std::to_string(doppler_step));
config->set_property("Acquisition_1C.bit_transition_flag", "false");
config->set_property("Acquisition_1C.max_dwells", std::to_string(max_dwells));
config->set_property("Acquisition_1C.make_two_steps", "false");
config->set_property("Acquisition_1C.second_nbins", "8");
config->set_property("Acquisition_1C.second_doppler_step", "125");
config->set_property("Acquisition_1C.dump", "false");
config->set_property("Acquisition_1C.dump_filename", "./acquisition");
config->set_property("Acquisition_1C.dump_channel", "1");
config->set_property("Acquisition_1C.blocking", "true");
// Set Tracking
config->set_property("Tracking_1C.implementation", "GPS_L1_CA_DLL_PLL_Tracking");
config->set_property("Tracking_1C.item_type", "gr_complex");
config->set_property("Tracking_1C.dump", "false");
config->set_property("Tracking_1C.dump_filename", "./tracking_ch_");
config->set_property("Tracking_1C.pll_bw_hz", std::to_string(pll_bw_hz));
config->set_property("Tracking_1C.dll_bw_hz", std::to_string(dll_bw_hz));
config->set_property("Tracking_1C.early_late_space_chips", std::to_string(early_late_space_chips));
config->set_property("Tracking_1C.early_late_space_narrow_chips", std::to_string(early_late_space_narrow_chips));
config->set_property("Tracking_1C.pll_bw_narrow_hz", std::to_string(pll_bw_narrow_hz));
config->set_property("Tracking_1C.dll_bw_narrow_hz", std::to_string(dll_bw_narrow_hz));
config->set_property("Tracking_1C.extend_correlation_symbols", std::to_string(extend_correlation_symbols));
// config->set_property("Tracking_1C.high_dyn", "true");
// config->set_property("Tracking_1C.smoother_length", "200");
// Set Telemetry
config->set_property("TelemetryDecoder_1C.implementation", "GPS_L1_CA_Telemetry_Decoder");
config->set_property("TelemetryDecoder_1C.dump", "false");
// Set Observables
config->set_property("Observables.implementation", "Hybrid_Observables");
config->set_property("Observables.enable_carrier_smoothing", FLAGS_enable_carrier_smoothing ? "true" : "false");
config->set_property("Observables.smoothing_factor", std::to_string(FLAGS_carrier_smoothing_factor));
config->set_property("Observables.dump", "false");
config->set_property("Observables.dump_filename", "./observables.dat");
// Set PVT
config->set_property("PVT.implementation", "RTKLIB_PVT");
config->set_property("PVT.enable_pvt_kf", "true"),
config->set_property("PVT.positioning_mode", "PPP_Static");
config->set_property("PVT.output_rate_ms", std::to_string(output_rate_ms));
config->set_property("PVT.display_rate_ms", std::to_string(display_rate_ms));
config->set_property("PVT.dump_filename", "./PVT");
config->set_property("PVT.nmea_dump_filename", "./gnss_sdr_pvt.nmea");
config->set_property("PVT.flag_nmea_tty_port", "false");
config->set_property("PVT.nmea_dump_devname", "/dev/pts/4");
config->set_property("PVT.flag_rtcm_server", "false");
config->set_property("PVT.flag_rtcm_tty_port", "false");
config->set_property("PVT.rtcm_dump_devname", "/dev/pts/1");
config->set_property("PVT.dump", "true");
config->set_property("PVT.rinex_version", std::to_string(2));
config->set_property("PVT.iono_model", "OFF");
config->set_property("PVT.trop_model", "OFF");
config->set_property("PVT.AR_GPS", "PPP-AR");
config->set_property("PVT.elevation_mask", std::to_string(5));
config_f = nullptr;
}
else
{
config_f = std::make_shared<FileConfiguration>(FLAGS_config_file_ptest);
config = nullptr;
}
return 0;
}
int PositionSystemTest::run_receiver()
{
std::shared_ptr<ControlThread> control_thread;
if (FLAGS_config_file_ptest.empty())
{
control_thread = std::make_shared<ControlThread>(config);
}
else
{
control_thread = std::make_shared<ControlThread>(config_f);
}
start = std::chrono::system_clock::now();
// start receiver
try
{
control_thread->run();
}
catch (const boost::exception& e)
{
std::cout << "Boost exception: " << boost::diagnostic_information(e);
}
catch (const std::exception& ex)
{
std::cout << "STD exception: " << ex.what();
}
end = std::chrono::system_clock::now();
// Get the name of the KML file generated by the receiver
std::this_thread::sleep_for(std::chrono::milliseconds(2000));
FILE* fp;
std::string argum2 = std::string("/bin/ls *kml | tail -1");
std::array<char, 1035> buffer{};
fp = popen(&argum2[0], "r");
if (fp == nullptr)
{
std::cout << "Failed to run command: " << argum2 << '\n';
return -1;
}
while (fgets(buffer.data(), buffer.size(), fp) != nullptr)
{
std::string aux = std::string(buffer.data());
EXPECT_EQ(aux.empty(), false);
PositionSystemTest::generated_kml_file = aux.erase(aux.length() - 1, 1);
}
pclose(fp);
EXPECT_EQ(PositionSystemTest::generated_kml_file.empty(), false);
return 0;
}
bool PositionSystemTest::save_mat_xy(std::vector<double>* x, std::vector<double>* y, std::string filename)
{
try
{
// WRITE MAT FILE
mat_t* matfp;
matvar_t* matvar;
filename.append(".mat");
std::cout << "save_mat_xy write " << filename << '\n';
matfp = Mat_CreateVer(filename.c_str(), nullptr, MAT_FT_MAT5);
if (reinterpret_cast<int64_t*>(matfp) != nullptr)
{
std::array<size_t, 2> dims{1, x->size()};
matvar = Mat_VarCreate("x", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), &x[0], 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("y", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), &y[0], 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
}
else
{
std::cout << "save_mat_xy: error creating file\n";
}
Mat_Close(matfp);
return true;
}
catch (const std::exception& ex)
{
std::cout << "save_mat_xy: " << ex.what() << '\n';
return false;
}
}
bool PositionSystemTest::save_mat_x(std::vector<double>* x, std::string filename)
{
try
{
// WRITE MAT FILE
mat_t* matfp;
matvar_t* matvar;
filename.append(".mat");
std::cout << "save_mat_x write " << filename << '\n';
matfp = Mat_CreateVer(filename.c_str(), nullptr, MAT_FT_MAT5);
if (reinterpret_cast<int64_t*>(matfp) != nullptr)
{
std::array<size_t, 2> dims{1, x->size()};
matvar = Mat_VarCreate("x", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), &x[0], 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
}
else
{
std::cout << "save_mat_x: error creating file\n";
}
Mat_Close(matfp);
return true;
}
catch (const std::exception& ex)
{
std::cout << "save_mat_x: " << ex.what() << '\n';
return false;
}
}
void PositionSystemTest::check_results()
{
arma::mat R_eb_e; // ECEF position (x,y,z) estimation in the Earth frame (Nx3)
arma::mat R_eb_enu; // ENU position (N,E,U) estimation in UTM (Nx3)
arma::mat V_eb_e; // ECEF velocity (x,y,z) estimation in the Earth frame (Nx3)
arma::mat LLH; // Geodetic coordinates (latitude, longitude, height) estimation in WGS84 datum
arma::vec receiver_time_s;
arma::mat ref_R_eb_e; // ECEF position (x,y,z) reference in the Earth frame (Nx3)
arma::mat ref_V_eb_e; // ECEF velocity (x,y,z) reference in the Earth frame (Nx3)
arma::mat ref_LLH; // Geodetic coordinates (latitude, longitude, height) reference in WGS84 datum
arma::vec ref_time_s;
std::istringstream iss2(FLAGS_static_position);
std::string str_aux;
std::getline(iss2, str_aux, ',');
double ref_lat = std::stod(str_aux);
std::getline(iss2, str_aux, ',');
double ref_long = std::stod(str_aux);
std::getline(iss2, str_aux, '\n');
double ref_h = std::stod(str_aux);
int utm_zone = findUtmZone(ref_lat, ref_long);
arma::vec v_eb_n = {0.0, 0.0, 0.0};
arma::vec true_r_eb_e = {0.0, 0.0, 0.0};
arma::vec true_v_eb_e = {0.0, 0.0, 0.0};
pv_Geo_to_ECEF(degtorad(ref_lat), degtorad(ref_long), ref_h, v_eb_n, true_r_eb_e, true_v_eb_e);
ref_R_eb_e.insert_cols(0, true_r_eb_e);
arma::vec ref_r_enu = {0, 0, 0};
cart2utm(true_r_eb_e, utm_zone, ref_r_enu);
Rtklib_Solver_Dump_Reader pvt_reader;
pvt_reader.open_obs_file(FLAGS_pvt_solver_dump_filename);
int64_t n_epochs_pvt = pvt_reader.num_epochs();
R_eb_e = arma::zeros(3, n_epochs_pvt);
V_eb_e = arma::zeros(3, n_epochs_pvt);
LLH = arma::zeros(3, n_epochs_pvt);
receiver_time_s = arma::zeros(n_epochs_pvt, 1);
int64_t current_epoch = 0;
while (pvt_reader.read_binary_obs())
{
receiver_time_s(current_epoch) = pvt_reader.RX_time - pvt_reader.clk_offset_s;
R_eb_e(0, current_epoch) = pvt_reader.rr[0];
R_eb_e(1, current_epoch) = pvt_reader.rr[1];
R_eb_e(2, current_epoch) = pvt_reader.rr[2];
V_eb_e(0, current_epoch) = pvt_reader.rr[3];
V_eb_e(1, current_epoch) = pvt_reader.rr[4];
V_eb_e(2, current_epoch) = pvt_reader.rr[5];
LLH(0, current_epoch) = pvt_reader.latitude;
LLH(1, current_epoch) = pvt_reader.longitude;
LLH(2, current_epoch) = pvt_reader.height;
arma::vec tmp_r_enu = {0, 0, 0};
cart2utm(R_eb_e.col(current_epoch), utm_zone, tmp_r_enu);
R_eb_enu.insert_cols(current_epoch, tmp_r_enu);
// debug check
// std::cout << "t1: " << pvt_reader.RX_time << '\n';
// std::cout << "t2: " << pvt_reader.TOW_at_current_symbol_ms << '\n';
// std::cout << "offset: " << pvt_reader.clk_offset_s << '\n';
// getchar();
current_epoch++;
}
ASSERT_FALSE(current_epoch == 0) << "PVT dump is empty";
// compute results
if (FLAGS_static_scenario)
{
double sigma_E_2_precision = arma::var(R_eb_enu.row(0));
double sigma_N_2_precision = arma::var(R_eb_enu.row(1));
double sigma_U_2_precision = arma::var(R_eb_enu.row(2));
arma::rowvec error_east_m;
error_east_m = R_eb_enu.row(0) - ref_r_enu(0);
double sigma_E_2_accuracy = arma::as_scalar(error_east_m * error_east_m.t());
sigma_E_2_accuracy = sigma_E_2_accuracy / error_east_m.n_elem;
arma::rowvec error_north_m;
error_north_m = R_eb_enu.row(1) - ref_r_enu(1);
double sigma_N_2_accuracy = arma::as_scalar(error_north_m * error_north_m.t());
sigma_N_2_accuracy = sigma_N_2_accuracy / error_north_m.n_elem;
arma::rowvec error_up_m;
error_up_m = R_eb_enu.row(2) - ref_r_enu(2);
double sigma_U_2_accuracy = arma::as_scalar(error_up_m * error_up_m.t());
sigma_U_2_accuracy = sigma_U_2_accuracy / error_up_m.n_elem;
// arma::mat error_enu_mat = arma::zeros(3, error_east_m.n_elem);
// error_enu_mat.row(0) = error_east_m;
// error_enu_mat.row(1) = error_north_m;
// error_enu_mat.row(2) = error_up_m;
//
// arma::vec error_2D_m = arma::zeros(error_enu_mat.n_cols, 1);
// arma::vec error_3D_m = arma::zeros(error_enu_mat.n_cols, 1);
// for (uint64_t n = 0; n < error_enu_mat.n_cols; n++)
// {
// error_2D_m(n) = arma::norm(error_enu_mat.submat(0, n, 1, n));
// error_3D_m(n) = arma::norm(error_enu_mat.col(n));
// }
double static_2D_error_m = sqrt(pow(arma::mean(error_east_m), 2.0) + pow(arma::mean(error_north_m), 2.0));
double static_3D_error_m = sqrt(pow(arma::mean(error_east_m), 2.0) + pow(arma::mean(error_north_m), 2.0) + pow(arma::mean(error_up_m), 2.0));
std::chrono::duration<double> elapsed_seconds = end - start;
std::stringstream stm;
std::ofstream position_test_file;
if (!FLAGS_config_file_ptest.empty())
{
stm << "Configuration file: " << FLAGS_config_file_ptest << '\n';
}
stm << "---- STATIC ACCURACY ----\n";
stm << "2DRMS = " << 2 * sqrt(sigma_E_2_accuracy + sigma_N_2_accuracy) << " [m]\n";
stm << "DRMS = " << sqrt(sigma_E_2_accuracy + sigma_N_2_accuracy) << " [m]\n";
stm << "CEP = " << 0.62 * sqrt(sigma_N_2_accuracy) + 0.56 * sqrt(sigma_E_2_accuracy) << " [m]\n";
stm << "99% SAS = " << 1.122 * (sigma_E_2_accuracy + sigma_N_2_accuracy + sigma_U_2_accuracy) << " [m]\n";
stm << "90% SAS = " << 0.833 * (sigma_E_2_accuracy + sigma_N_2_accuracy + sigma_U_2_accuracy) << " [m]\n";
stm << "MRSE = " << sqrt(sigma_E_2_accuracy + sigma_N_2_accuracy + sigma_U_2_accuracy) << " [m]\n";
stm << "SEP = " << 0.51 * (sigma_E_2_accuracy + sigma_N_2_accuracy + sigma_U_2_accuracy) << " [m]\n";
stm << "Static Bias 2D = " << static_2D_error_m << " [m]\n";
stm << "Static Bias 3D = " << static_3D_error_m << " [m]\n";
stm << '\n';
stm << "---- STATIC PRECISION ----\n";
stm << "2DRMS = " << 2 * sqrt(sigma_E_2_precision + sigma_N_2_precision) << " [m]\n";
stm << "DRMS = " << sqrt(sigma_E_2_precision + sigma_N_2_precision) << " [m]\n";
stm << "CEP = " << 0.62 * sqrt(sigma_N_2_precision) + 0.56 * sqrt(sigma_E_2_precision) << " [m]\n";
stm << "99% SAS = " << 1.122 * (sigma_E_2_precision + sigma_N_2_precision + sigma_U_2_precision) << " [m]\n";
stm << "90% SAS = " << 0.833 * (sigma_E_2_precision + sigma_N_2_precision + sigma_U_2_precision) << " [m]\n";
stm << "MRSE = " << sqrt(sigma_E_2_precision + sigma_N_2_precision + sigma_U_2_precision) << " [m]\n";
stm << "SEP = " << 0.51 * (sigma_E_2_precision + sigma_N_2_precision + sigma_U_2_precision) << " [m]\n";
stm << '\n';
stm << "Receiver runtime: " << elapsed_seconds.count() << " [seconds]\n";
std::cout << stm.rdbuf();
std::string output_filename = "position_test_output_" + PositionSystemTest::generated_kml_file.erase(PositionSystemTest::generated_kml_file.length() - 3, 3) + "txt";
position_test_file.open(output_filename.c_str());
if (position_test_file.is_open())
{
position_test_file << stm.str();
position_test_file.close();
}
// Sanity Check
double accuracy_CEP = 0.62 * sqrt(sigma_N_2_accuracy) + 0.56 * sqrt(sigma_E_2_accuracy);
double precision_SEP = 0.51 * (sigma_E_2_precision + sigma_N_2_precision + sigma_U_2_precision);
EXPECT_LT(static_2D_error_m, FLAGS_static_2D_error_m);
EXPECT_LT(static_3D_error_m, FLAGS_static_3D_error_m);
ASSERT_LT(accuracy_CEP, FLAGS_accuracy_CEP);
ASSERT_LT(precision_SEP, FLAGS_precision_SEP);
if (FLAGS_plot_position_test == true)
{
print_results(R_eb_enu);
}
}
else
{
// dynamic position
Spirent_Motion_Csv_Dump_Reader ref_reader;
ref_reader.open_obs_file(FLAGS_ref_motion_filename);
int64_t n_epochs_ref = ref_reader.num_epochs();
ref_R_eb_e = arma::zeros(3, n_epochs_ref);
ref_V_eb_e = arma::zeros(3, n_epochs_ref);
ref_LLH = arma::zeros(3, n_epochs_ref);
ref_time_s = arma::zeros(n_epochs_ref, 1);
int64_t current_epoch_index = 0;
while (ref_reader.read_csv_obs())
{
ref_time_s(current_epoch_index) = ref_reader.TOW_ms / 1000.0;
ref_R_eb_e(0, current_epoch_index) = ref_reader.Pos_X;
ref_R_eb_e(1, current_epoch_index) = ref_reader.Pos_Y;
ref_R_eb_e(2, current_epoch_index) = ref_reader.Pos_Z;
ref_V_eb_e(0, current_epoch_index) = ref_reader.Vel_X;
ref_V_eb_e(1, current_epoch_index) = ref_reader.Vel_Y;
ref_V_eb_e(2, current_epoch_index) = ref_reader.Vel_Z;
ref_LLH(0, current_epoch_index) = ref_reader.Lat;
ref_LLH(1, current_epoch_index) = ref_reader.Long;
ref_LLH(2, current_epoch_index) = ref_reader.Height;
current_epoch_index++;
}
// interpolation of reference data to receiver epochs timestamps
arma::mat ref_interp_R_eb_e = arma::zeros(3, R_eb_e.n_cols);
arma::mat ref_interp_V_eb_e = arma::zeros(3, V_eb_e.n_cols);
arma::mat ref_interp_LLH = arma::zeros(3, LLH.n_cols);
arma::vec tmp_vector;
for (int n = 0; n < 3; n++)
{
arma::interp1(ref_time_s, ref_R_eb_e.row(n), receiver_time_s, tmp_vector);
ref_interp_R_eb_e.row(n) = tmp_vector.t();
arma::interp1(ref_time_s, ref_V_eb_e.row(n), receiver_time_s, tmp_vector);
ref_interp_V_eb_e.row(n) = tmp_vector.t();
arma::interp1(ref_time_s, ref_LLH.row(n), receiver_time_s, tmp_vector);
ref_interp_LLH.row(n) = tmp_vector.t();
}
// compute error vectors
arma::mat error_R_eb_e = arma::zeros(3, R_eb_e.n_cols);
arma::mat error_V_eb_e = arma::zeros(3, V_eb_e.n_cols);
arma::mat error_LLH = arma::zeros(3, LLH.n_cols);
error_R_eb_e = R_eb_e - ref_interp_R_eb_e;
error_V_eb_e = V_eb_e - ref_interp_V_eb_e;
error_LLH = LLH - ref_interp_LLH;
arma::vec error_module_R_eb_e = arma::zeros(R_eb_e.n_cols, 1);
arma::vec error_module_V_eb_e = arma::zeros(V_eb_e.n_cols, 1);
for (uint64_t n = 0; n < R_eb_e.n_cols; n++)
{
error_module_R_eb_e(n) = arma::norm(error_R_eb_e.col(n));
error_module_V_eb_e(n) = arma::norm(error_V_eb_e.col(n));
}
// Error statistics
arma::vec tmp_vec;
// RMSE, Mean, Variance and peaks
tmp_vec = arma::square(error_module_R_eb_e);
double rmse_R_eb_e = sqrt(arma::mean(tmp_vec));
double error_mean_R_eb_e = arma::mean(error_module_R_eb_e);
double error_var_R_eb_e = arma::var(error_module_R_eb_e);
double max_error_R_eb_e = arma::max(error_module_R_eb_e);
double min_error_R_eb_e = arma::min(error_module_R_eb_e);
tmp_vec = arma::square(error_module_V_eb_e);
double rmse_V_eb_e = sqrt(arma::mean(tmp_vec));
double error_mean_V_eb_e = arma::mean(error_module_V_eb_e);
double error_var_V_eb_e = arma::var(error_module_V_eb_e);
double max_error_V_eb_e = arma::max(error_module_V_eb_e);
double min_error_V_eb_e = arma::min(error_module_V_eb_e);
// report
std::cout << "----- Position and Velocity 3D ECEF error statistics -----\n";
if (!FLAGS_config_file_ptest.empty())
{
std::cout << "---- Configuration file: " << FLAGS_config_file_ptest << '\n';
}
std::streamsize ss = std::cout.precision();
std::cout << std::setprecision(10) << "---- 3D ECEF Position RMSE = "
<< rmse_R_eb_e << ", mean = " << error_mean_R_eb_e
<< ", stdev = " << sqrt(error_var_R_eb_e)
<< " (max,min) = " << max_error_R_eb_e
<< "," << min_error_R_eb_e
<< " [m]\n";
std::cout << "---- 3D ECEF Velocity RMSE = "
<< rmse_V_eb_e << ", mean = " << error_mean_V_eb_e
<< ", stdev = " << sqrt(error_var_V_eb_e)
<< " (max,min) = " << max_error_V_eb_e
<< "," << min_error_V_eb_e
<< " [m/s]\n";
std::cout.precision(ss);
// plots
if (FLAGS_plot_position_test == true)
{
const std::string gnuplot_executable(FLAGS_gnuplot_executable);
if (!gnuplot_executable.empty())
{
Gnuplot g1("points");
if (FLAGS_show_plots)
{
g1.showonscreen(); // window output
}
else
{
g1.disablescreen();
}
g1.set_title("3D ECEF error coordinates");
g1.set_grid();
// conversion between arma::vec and std:vector
arma::rowvec arma_vec_error_x = error_R_eb_e.row(0);
arma::rowvec arma_vec_error_y = error_R_eb_e.row(1);
arma::rowvec arma_vec_error_z = error_R_eb_e.row(2);
std::vector<double> X(arma_vec_error_x.colptr(0), arma_vec_error_x.colptr(0) + arma_vec_error_x.n_rows);
std::vector<double> Y(arma_vec_error_y.colptr(0), arma_vec_error_y.colptr(0) + arma_vec_error_y.n_rows);
std::vector<double> Z(arma_vec_error_z.colptr(0), arma_vec_error_z.colptr(0) + arma_vec_error_z.n_rows);
g1.cmd("set key box opaque");
g1.plot_xyz(X, Y, Z, "ECEF 3D error");
g1.set_legend();
if (FLAGS_config_file_ptest.empty())
{
g1.savetops("ECEF_3d_error");
}
else
{
g1.savetops("ECEF_3d_error_" + config_filename_no_extension);
}
arma::vec time_vector_from_start_s = receiver_time_s - receiver_time_s(0);
Gnuplot g3("linespoints");
if (FLAGS_show_plots)
{
g3.showonscreen(); // window output
}
else
{
g3.disablescreen();
}
g3.set_title("3D Position estimation error module [m]");
g3.set_grid();
g3.set_xlabel("Receiver epoch time from first valid PVT [s]");
g3.set_ylabel("3D Position error [m]");
// conversion between arma::vec and std:vector
std::vector<double> error_vec(error_module_R_eb_e.colptr(0), error_module_R_eb_e.colptr(0) + error_module_R_eb_e.n_rows);
g3.cmd("set key box opaque");
g3.plot_xy(time_vector_from_start_s, error_vec, "Position 3D error");
double mean3d = std::accumulate(error_vec.begin(), error_vec.end(), 0.0) / error_vec.size();
std::vector<double> error_mean(error_module_R_eb_e.n_rows, mean3d);
g3.set_style("lines");
g3.plot_xy(time_vector_from_start_s, error_mean, "Mean");
g3.set_legend();
if (FLAGS_config_file_ptest.empty())
{
g3.savetops("Position_3d_error");
}
else
{
g3.savetops("Position_3d_error_" + config_filename_no_extension);
}
Gnuplot g4("linespoints");
if (FLAGS_show_plots)
{
g4.showonscreen(); // window output
}
else
{
g4.disablescreen();
}
g4.set_title("3D Velocity estimation error module [m/s]");
g4.set_grid();
g4.set_xlabel("Receiver epoch time from first valid PVT [s]");
g4.set_ylabel("3D Velocity error [m/s]");
// conversion between arma::vec and std:vector
std::vector<double> error_vec2(error_module_V_eb_e.colptr(0), error_module_V_eb_e.colptr(0) + error_module_V_eb_e.n_rows);
g4.cmd("set key box opaque");
g4.plot_xy(time_vector_from_start_s, error_vec2, "Velocity 3D error");
double mean3dv = std::accumulate(error_vec2.begin(), error_vec2.end(), 0.0) / error_vec2.size();
std::vector<double> error_mean_v(error_module_V_eb_e.n_rows, mean3dv);
g4.set_style("lines");
g4.plot_xy(time_vector_from_start_s, error_mean_v, "Mean");
g4.set_legend();
if (FLAGS_config_file_ptest.empty())
{
g4.savetops("Velocity_3d_error");
}
else
{
g4.savetops("Velocity_3d_error_" + config_filename_no_extension);
}
}
}
// ERROR CHECK
// todo: reduce the error tolerance or enable the option to pass the error tolerance by parameter
EXPECT_LT(rmse_R_eb_e, FLAGS_dynamic_3D_position_RMSE); // 3D RMS positioning error less than 10 meters
EXPECT_LT(rmse_V_eb_e, FLAGS_dynamic_3D_velocity_RMSE); // 3D RMS speed error less than 5 meters/s (18 km/h)
}
}
void PositionSystemTest::print_results(const arma::mat& R_eb_enu) const
{
const std::string gnuplot_executable(FLAGS_gnuplot_executable);
if (gnuplot_executable.empty())
{
std::cout << "WARNING: Although the flag plot_position_test has been set to TRUE,\n";
std::cout << "gnuplot has not been found in your system.\n";
std::cout << "Test results will not be plotted.\n";
}
else
{
double sigma_E_2_precision = arma::var(R_eb_enu.row(0));
double sigma_N_2_precision = arma::var(R_eb_enu.row(1));
double sigma_U_2_precision = arma::var(R_eb_enu.row(2));
double mean_east = arma::mean(R_eb_enu.row(0));
double mean_north = arma::mean(R_eb_enu.row(1));
double mean_up = arma::mean(R_eb_enu.row(2));
double it_max_east = arma::max(R_eb_enu.row(0) - mean_east);
double it_min_east = arma::min(R_eb_enu.row(0) - mean_east);
double it_max_north = arma::max(R_eb_enu.row(1) - mean_north);
double it_min_north = arma::min(R_eb_enu.row(1) - mean_north);
double it_max_up = arma::max(R_eb_enu.row(2) - mean_up);
double it_min_up = arma::min(R_eb_enu.row(2) - mean_up);
double east_range = std::max(it_max_east, std::abs(it_min_east));
double north_range = std::max(it_max_north, std::abs(it_min_north));
double up_range = std::max(it_max_up, std::abs(it_min_up));
double range = std::max(east_range, north_range) * 1.1;
double range_3d = std::max(std::max(east_range, north_range), up_range) * 1.1;
double two_drms = 2 * sqrt(sigma_E_2_precision + sigma_N_2_precision);
double ninty_sas = 0.833 * (sigma_E_2_precision + sigma_N_2_precision + sigma_U_2_precision);
arma::rowvec arma_east = R_eb_enu.row(0) - mean_east;
arma::rowvec arma_north = R_eb_enu.row(1) - mean_north;
arma::rowvec arma_up = R_eb_enu.row(2) - mean_up;
std::vector<double> east(arma_east.colptr(0), arma_east.row(0).colptr(0) + arma_east.row(0).n_cols);
std::vector<double> north(arma_north.colptr(0), arma_north.colptr(0) + arma_north.n_cols);
std::vector<double> up(arma_up.colptr(0), arma_up.colptr(0) + arma_up.n_cols);
try
{
fs::path p(gnuplot_executable);
fs::path dir = p.parent_path();
const std::string& gnuplot_path = dir.native();
Gnuplot::set_GNUPlotPath(gnuplot_path);
Gnuplot g1("points");
if (FLAGS_show_plots)
{
g1.showonscreen(); // window output
}
else
{
g1.disablescreen();
}
g1.set_title("2D precision");
g1.set_xlabel("East [m]");
g1.set_ylabel("North [m]");
g1.cmd("set size ratio -1");
g1.cmd("set xrange [-" + std::to_string(range) + ":" + std::to_string(range) + "]");
g1.cmd("set yrange [-" + std::to_string(range) + ":" + std::to_string(range) + "]");
g1.plot_xy(east, north, "2D Position Fixes");
g1.set_style("lines").plot_circle(mean_east, mean_north, two_drms, "2DRMS");
g1.set_style("lines").plot_circle(mean_east, mean_north, two_drms / 2.0, "DRMS");
g1.cmd("set grid front");
g1.cmd("replot");
if (FLAGS_config_file_ptest.empty())
{
g1.savetops("Position_test_2D");
g1.savetopdf("Position_test_2D", 18);
}
else
{
g1.savetops("Position_test_2D_" + config_filename_no_extension);
g1.savetopdf("Position_test_2D_" + config_filename_no_extension, 18);
}
Gnuplot g2("points");
if (FLAGS_show_plots)
{
g2.showonscreen(); // window output
}
else
{
g2.disablescreen();
}
g2.set_title("3D precision");
g2.set_xlabel("East [m]");
g2.set_ylabel("North [m]");
g2.set_zlabel("Up [m]");
g2.cmd("set size ratio -1");
g2.cmd("set xrange [-" + std::to_string(range_3d) + ":" + std::to_string(range_3d) + "]");
g2.cmd("set yrange [-" + std::to_string(range_3d) + ":" + std::to_string(range_3d) + "]");
g2.cmd("set zrange [-" + std::to_string(range_3d) + ":" + std::to_string(range_3d) + "]");
g2.cmd("set view equal xyz");
g2.cmd("set ticslevel 0");
g2.cmd("set style fill transparent solid 0.30 border\n set parametric\n set urange [0:2.0*pi]\n set vrange [-pi/2:pi/2]\n r = " +
std::to_string(ninty_sas) +
"\n fx(v,u) = r*cos(v)*cos(u)\n fy(v,u) = r*cos(v)*sin(u)\n fz(v) = r*sin(v) \n splot fx(v,u),fy(v,u),fz(v) title \"90%-SAS\" lt rgb \"gray\"\n");
g2.plot_xyz(east, north, up, "3D Position Fixes");
if (FLAGS_config_file_ptest.empty())
{
g2.savetops("Position_test_3D");
g2.savetopdf("Position_test_3D");
}
else
{
g2.savetops("Position_test_3D_" + config_filename_no_extension);
g2.savetopdf("Position_test_3D_" + config_filename_no_extension);
}
}
catch (const GnuplotException& ge)
{
std::cout << ge.what() << '\n';
}
}
}
TEST_F(PositionSystemTest /*unused*/, Position_system_test /*unused*/)
{
if (FLAGS_config_file_ptest.empty())
{
// Configure the signal generator
configure_generator();
// Generate signal raw signal samples and observations RINEX file
if (!FLAGS_disable_generator)
{
generate_signal();
}
}
else
{
config_filename_no_extension = FLAGS_config_file_ptest.substr(FLAGS_config_file_ptest.find_last_of("/\\") + 1);
config_filename_no_extension = config_filename_no_extension.erase(config_filename_no_extension.length() - 5);
}
// Configure receiver
configure_receiver();
// Run the receiver
EXPECT_EQ(run_receiver(), 0) << "Problem executing GNSS-SDR";
// Check results
check_results();
}
int main(int argc, char** argv)
{
std::cout << "Running Position precision test...\n";
int res = 0;
try
{
testing::InitGoogleTest(&argc, argv);
}
catch (...)
{
} // catch the "testing::internal::<unnamed>::ClassUniqueToAlwaysTrue" from gtest
gflags::ParseCommandLineFlags(&argc, &argv, true);
google::InitGoogleLogging(argv[0]);
// Run the Tests
try
{
res = RUN_ALL_TESTS();
}
catch (...)
{
LOG(WARNING) << "Unexpected catch";
}
gflags::ShutDownCommandLineFlags();
return res;
}