1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-11-05 01:26:24 +00:00
gnss-sdr/conf/gnss-sdr_GPS_L1_nsr_kf.conf
2018-03-13 11:51:33 +02:00

212 lines
7.8 KiB
Plaintext

; Default configuration file
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
;internal_fs_sps: Internal signal sampling frequency after the signal conditioning stage [samples per second].
;GNSS-SDR.internal_fs_sps=6826700
GNSS-SDR.internal_fs_sps=2560000
;GNSS-SDR.internal_fs_sps=4096000
;GNSS-SDR.internal_fs_sps=5120000
;######### SIGNAL_SOURCE CONFIG ############
;#implementation: Use [File_Signal_Source] [Nsr_File_Signal_Source] or [UHD_Signal_Source] or [GN3S_Signal_Source] (experimental)
SignalSource.implementation=Nsr_File_Signal_Source
;#filename: path to file with the captured GNSS signal samples to be processed
SignalSource.filename=/home/javier/signals/ifen/E1L1_FE0_Band0.stream ; <- PUT YOUR FILE HERE
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource.item_type=byte
;#sampling_frequency: Original Signal sampling frequency in [Hz]
SignalSource.sampling_frequency=20480000
;#freq: RF front-end center frequency in [Hz]
SignalSource.freq=1575420000
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
SignalSource.samples=0
;#repeat: Repeat the processing file. Disable this option in this version
SignalSource.repeat=false
;#dump: Dump the Signal source data to a file. Disable this option in this version
SignalSource.dump=false
SignalSource.dump_filename=../data/signal_source.dat
;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing.
; it helps to not overload the CPU, but the processing time will be longer.
SignalSource.enable_throttle_control=false
;######### SIGNAL_CONDITIONER CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER CONFIG ############
;## Changes the type of input data.
;#implementation: [Pass_Through] disables this block
DataTypeAdapter.implementation=Pass_Through
DataTypeAdapter.item_type=float
;######### INPUT_FILTER CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation
;# that shifts IF down to zero Hz.
InputFilter.implementation=Freq_Xlating_Fir_Filter
;#dump: Dump the filtered data to a file.
InputFilter.dump=false
;#dump_filename: Log path and filename.
InputFilter.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse
;#reponse given a set of band edges, the desired reponse on those bands,
;#and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version.
InputFilter.input_item_type=float
;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version.
InputFilter.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter.band1_begin=0.0
InputFilter.band1_end=0.45
InputFilter.band2_begin=0.55
InputFilter.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter.ampl1_begin=1.0
InputFilter.ampl1_end=1.0
InputFilter.ampl2_begin=0.0
InputFilter.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter.band1_error=1.0
InputFilter.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter.grid_density=16
;# Original sampling frequency stored in the signal file
InputFilter.sampling_frequency=20480000
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter.IF=5499998.47412109
;# Decimation factor after the frequency tranaslating block
InputFilter.decimation_factor=8
;######### RESAMPLER CONFIG ############
;## Resamples the input data.
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation
Resampler.implementation=Pass_Through
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_1C.count=8
Channels.in_acquisition=1
#Channel.signal=1C
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1C.dump=false
Acquisition_1C.dump_filename=./acq_dump.dat
Acquisition_1C.item_type=gr_complex
Acquisition_1C.if=0
Acquisition_1C.sampled_ms=1
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
;#use_CFAR_algorithm: If enabled, acquisition estimates the input signal power to implement CFAR detection algorithms
;#notice that this affects the Acquisition threshold range!
Acquisition_1C.use_CFAR_algorithm=false;
;#threshold: Acquisition threshold
Acquisition_1C.threshold=10
;Acquisition_1C.pfa=0.01
Acquisition_1C.doppler_max=5000
Acquisition_1C.doppler_step=100
;######### TRACKING GPS CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_KF_Tracking
Tracking_1C.item_type=gr_complex
Tracking_1C.if=0
Tracking_1C.dump=true
Tracking_1C.dump_filename=../data/epl_tracking_ch_
Tracking_1C.pll_bw_hz=15.0;
Tracking_1C.dll_bw_hz=2.0;
Tracking_1C.order=3;
;######### TELEMETRY DECODER GPS CONFIG ############
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C.dump=false
TelemetryDecoder_1C.decimation_factor=1;
;######### OBSERVABLES CONFIG ############
;#implementation:
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX
PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad
PVT.output_rate_ms=100
PVT.display_rate_ms=500
PVT.dump_filename=./PVT
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea;
PVT.flag_nmea_tty_port=false;
PVT.nmea_dump_devname=/dev/pts/4
PVT.flag_rtcm_server=false
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
PVT.dump=true