gnss-sdr/src/algorithms/tracking/libs/correlator.cc

224 lines
8.8 KiB
C++

/*!
* \file correlator.cc
* \brief Highly optimized vector correlator class
* \authors <ul>
* <li> Javier Arribas, 2011. jarribas(at)cttc.es
* <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com
* </ul>
*
* Class that implements a high optimized vector correlator class.
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include <iostream>
#include <gnuradio/gr_block.h>
#include "correlator.h"
unsigned long Correlator::next_power_2(unsigned long v)
{
v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v++;
return v;
}
void Correlator::Carrier_wipeoff_and_EPL_generic(int signal_length_samples,const gr_complex* input, gr_complex* carrier,gr_complex* E_code, gr_complex* P_code, gr_complex* L_code,gr_complex* E_out, gr_complex* P_out, gr_complex* L_out)
{
gr_complex bb_signal_sample(0,0);
*E_out = 0;
*P_out = 0;
*L_out = 0;
// perform Early, Prompt and Late correlation
for(int i=0; i < signal_length_samples; ++i)
{
//Perform the carrier wipe-off
bb_signal_sample = input[i] * carrier[i];
// Now get early, late, and prompt values for each
*E_out += bb_signal_sample * E_code[i];
*P_out += bb_signal_sample * P_code[i];
*L_out += bb_signal_sample * L_code[i];
}
}
void Correlator::Carrier_wipeoff_and_EPL_volk(int signal_length_samples,const gr_complex* input, gr_complex* carrier,gr_complex* E_code, gr_complex* P_code, gr_complex* L_code,gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, bool input_vector_aligned)
{
gr_complex* bb_signal;
gr_complex* input_aligned;
//todo: do something if posix_memalign fails
if (posix_memalign((void**)&bb_signal, 16, signal_length_samples * sizeof(gr_complex)) == 0) {};
if (input_vector_aligned==false)
{
//todo: do something if posix_memalign fails
if (posix_memalign((void**)&input_aligned, 16, signal_length_samples * sizeof(gr_complex)) == 0){};
memcpy(input_aligned,input,signal_length_samples * sizeof(gr_complex));
//volk_32fc_x2_multiply_32fc_a_manual(bb_signal, input_aligned, carrier, signal_length_samples, volk_32fc_x2_multiply_32fc_a_best_arch.c_str());
//volk_32fc_x2_dot_prod_32fc_a_manual(E_out, bb_signal, E_code, signal_length_samples * sizeof(gr_complex), volk_32fc_x2_dot_prod_32fc_a_best_arch.c_str());
//volk_32fc_x2_dot_prod_32fc_a_manual(P_out, bb_signal, P_code, signal_length_samples * sizeof(gr_complex), volk_32fc_x2_dot_prod_32fc_a_best_arch.c_str());
//volk_32fc_x2_dot_prod_32fc_a_manual(L_out, bb_signal, L_code, signal_length_samples * sizeof(gr_complex), volk_32fc_x2_dot_prod_32fc_a_best_arch.c_str());
volk_32fc_x2_multiply_32fc_a(bb_signal, input_aligned, carrier, signal_length_samples);
}else{
//use directly the input vector
volk_32fc_x2_multiply_32fc_a(bb_signal, input, carrier, signal_length_samples);
}
volk_32fc_x2_dot_prod_32fc_a(E_out, bb_signal, E_code, signal_length_samples * sizeof(gr_complex));
volk_32fc_x2_dot_prod_32fc_a(P_out, bb_signal, P_code, signal_length_samples * sizeof(gr_complex));
volk_32fc_x2_dot_prod_32fc_a(L_out, bb_signal, L_code, signal_length_samples * sizeof(gr_complex));
free(bb_signal);
if (input_vector_aligned==false)
{
free(input_aligned);
}
}
void Correlator::Carrier_wipeoff_and_VEPL_volk(int signal_length_samples,const gr_complex* input, gr_complex* carrier,gr_complex* VE_code,gr_complex* E_code, gr_complex* P_code, gr_complex* L_code,gr_complex* VL_code,gr_complex* VE_out,gr_complex* E_out, gr_complex* P_out, gr_complex* L_out,gr_complex* VL_out,bool input_vector_aligned)
{
gr_complex* bb_signal;
gr_complex* input_aligned;
//todo: do something if posix_memalign fails
if (posix_memalign((void**)&bb_signal, 16, signal_length_samples * sizeof(gr_complex)) == 0) {};
if (input_vector_aligned==false)
{
//todo: do something if posix_memalign fails
if (posix_memalign((void**)&input_aligned, 16, signal_length_samples * sizeof(gr_complex)) == 0){};
memcpy(input_aligned,input,signal_length_samples * sizeof(gr_complex));
volk_32fc_x2_multiply_32fc_a(bb_signal, input_aligned, carrier, signal_length_samples);
}else{
//use directly the input vector
volk_32fc_x2_multiply_32fc_a(bb_signal, input, carrier, signal_length_samples);
}
volk_32fc_x2_dot_prod_32fc_a(VE_out, bb_signal, VE_code, signal_length_samples * sizeof(gr_complex));
volk_32fc_x2_dot_prod_32fc_a(E_out, bb_signal, E_code, signal_length_samples * sizeof(gr_complex));
volk_32fc_x2_dot_prod_32fc_a(P_out, bb_signal, P_code, signal_length_samples * sizeof(gr_complex));
volk_32fc_x2_dot_prod_32fc_a(L_out, bb_signal, L_code, signal_length_samples * sizeof(gr_complex));
volk_32fc_x2_dot_prod_32fc_a(VL_out, bb_signal, VL_code, signal_length_samples * sizeof(gr_complex));
free(bb_signal);
if (input_vector_aligned==false)
{
free(input_aligned);
}
}
void Correlator::cpu_arch_test_volk_32fc_x2_dot_prod_32fc_a()
{
//
struct volk_func_desc desc=volk_32fc_x2_dot_prod_32fc_a_get_func_desc();
std::vector<std::string> arch_list;
for(int i = 0; i < desc.n_archs; ++i)
{
//if(!(archs[i+1] & volk_get_lvarch())) continue; //this arch isn't available on this pc
arch_list.push_back(std::string(desc.indices[i]));
}
//first let's get a list of available architectures for the test
if(arch_list.size() < 2)
{
std::cout << "no architectures to test" << std::endl;
this->volk_32fc_x2_dot_prod_32fc_a_best_arch = "generic";
}
else
{
std::cout << "Detected architectures in this machine for volk_32fc_x2_dot_prod_32fc_a:" << std::endl;
for (unsigned int i=0; i < arch_list.size(); ++i)
{
std::cout << "Arch " << i << ":" << arch_list.at(i) << std::endl;
}
// TODO: Make a test to find the best architecture
this->volk_32fc_x2_dot_prod_32fc_a_best_arch = arch_list.at(arch_list.size() - 1);
}
std::cout << "Selected architecture for volk_32fc_x2_dot_prod_32fc_a is " << this->volk_32fc_x2_dot_prod_32fc_a_best_arch << std::endl;
}
void Correlator::cpu_arch_test_volk_32fc_x2_multiply_32fc_a()
{
//
struct volk_func_desc desc = volk_32fc_x2_multiply_32fc_a_get_func_desc();
std::vector<std::string> arch_list;
for(int i = 0; i < desc.n_archs; ++i)
{
//if(!(archs[i+1] & volk_get_lvarch())) continue; //this arch isn't available on this pc
arch_list.push_back(std::string(desc.indices[i]));
}
this->volk_32fc_x2_multiply_32fc_a_best_arch = "generic";
//first let's get a list of available architectures for the test
if(arch_list.size() < 2)
{
std::cout << "no architectures to test" << std::endl;
}
else
{
std::cout << "Detected architectures in this machine for volk_32fc_x2_multiply_32fc_a:" << std::endl;
for (unsigned int i=0; i < arch_list.size(); ++i)
{
std::cout << "Arch " << i << ":" << arch_list.at(i) << std::endl;
if (arch_list.at(i).find("sse") != std::string::npos)
{
// TODO: Make a test to find the best architecture
this->volk_32fc_x2_multiply_32fc_a_best_arch = arch_list.at(i);
}
}
}
std::cout << "Selected architecture for volk_32fc_x2_multiply_32fc_a_best_arch is " << this->volk_32fc_x2_multiply_32fc_a_best_arch << std::endl;
}
Correlator::Correlator ()
{
//cpu_arch_test_volk_32fc_x2_dot_prod_32fc_a();
//cpu_arch_test_volk_32fc_x2_multiply_32fc_a();
}
Correlator::~Correlator ()
{}