1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-01-22 15:07:23 +00:00
gnss-sdr/conf/gnss-sdr_multichannel_GPS_L1_USRP_X300_realtime.conf

417 lines
16 KiB
Plaintext

; Default configuration file
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
;internal_fs_hz: Internal signal sampling frequency after the signal conditioning stage [Hz].
GNSS-SDR.internal_fs_hz=4000000
;######### SUPL RRLP GPS assistance configuration #####
; Check http://www.mcc-mnc.com/
; On Android: https://play.google.com/store/apps/details?id=net.its_here.cellidinfo&hl=en
GNSS-SDR.SUPL_1C_enabled=false
GNSS-SDR.SUPL_read_1C_assistance_xml=true
GNSS-SDR.SUPL_1C_ephemeris_server=supl.google.com
GNSS-SDR.SUPL_1C_ephemeris_port=7275
GNSS-SDR.SUPL_1C_acquisition_server=supl.google.com
GNSS-SDR.SUPL_1C_acquisition_port=7275
GNSS-SDR.SUPL_MCC=244
GNSS-SDR.SUPL_MNS=5
GNSS-SDR.SUPL_LAC=0x59e2
GNSS-SDR.SUPL_CI=0x31b0
;######### SIGNAL_SOURCE CONFIG ############
;#implementation: Use [File_Signal_Source] or [UHD_Signal_Source] or [GN3S_Signal_Source] (experimental)
SignalSource.implementation=UHD_Signal_Source
;#When left empty, the device discovery routines will search all vailable transports on the system (ethernet, usb...)
SignalSource.device_address=192.168.40.2 ; <- PUT THE IP ADDRESS OF YOUR USRP HERE
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource.item_type=gr_complex
;#RF_channels: Number of RF channels present in the frontend device (i.e. USRP with two frontends)
SignalSource.RF_channels=2
;#sampling_frequency: Original Signal sampling frequency in [Hz]
SignalSource.sampling_frequency=4000000
;#subdevice: UHD subdevice specification (for USRP dual frontend use A:0 or B:0 or A:0 B:0)
SignalSource.subdevice=A:0 B:0
;######### RF Channels specific settings ######
;## RF CHANNEL 0 ##
;#freq: RF front-end center frequency in [Hz]
SignalSource.freq0=1575420000
;#gain: Front-end Gain in [dB]
SignalSource.gain0=50
;#samples: Number of samples to be processed. Notice that 0 indicates no limit
SignalSource.samples0=0
;#dump: Dump the Signal source RF channel data to a file. Disable this option in this version
SignalSource.dump0=false
SignalSource.dump_filename0=../data/signal_source0.dat
;## RF CHANNEL 1 ##
;#freq: RF front-end center frequency in [Hz]
SignalSource.freq1=1575420000
;#gain: Front-end Gain in [dB]
SignalSource.gain1=50
;#samples: Number of samples to be processed. Notice that 0 indicates no limit
SignalSource.samples1=0
;#dump: Dump the Signal source RF channel data to a file. Disable this option in this version
SignalSource.dump1=false
SignalSource.dump_filename1=../data/signal_source1.dat
;######### SIGNAL_CONDITIONER 0 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner0.implementation=Pass_Through
;######### DATA_TYPE_ADAPTER 0 CONFIG ############
;## Changes the type of input data.
;#implementation: [Pass_Through] disables this block
DataTypeAdapter0.implementation=Pass_Through
DataTypeAdapter0.item_type=gr_complex
;######### INPUT_FILTER 0 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation
;# that shifts IF down to zero Hz.
InputFilter0.implementation=Pass_Through
;#dump: Dump the filtered data to a file.
InputFilter0.dump=false
;#dump_filename: Log path and filename.
InputFilter0.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse
;#reponse given a set of band edges, the desired reponse on those bands,
;#and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version.
InputFilter0.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version.
InputFilter0.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter0.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter0.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter0.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter0.band1_begin=0.0
InputFilter0.band1_end=0.45
InputFilter0.band2_begin=0.55
InputFilter0.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter0.ampl1_begin=1.0
InputFilter0.ampl1_end=1.0
InputFilter0.ampl2_begin=0.0
InputFilter0.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter0.band1_error=1.0
InputFilter0.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter0.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter0.grid_density=16
;# Original sampling frequency stored in the signal file
InputFilter0.sampling_frequency=20480000
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter0.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter0.IF=5499998.47412109
;# Decimation factor after the frequency tranaslating block
InputFilter0.decimation_factor=8
;######### RESAMPLER CONFIG 0 ############
;## Resamples the input data.
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation
Resampler0.implementation=Pass_Through
;######### SIGNAL_CONDITIONER 1 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner1.implementation=Pass_Through
;######### INPUT_FILTER 1 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation
;# that shifts IF down to zero Hz.
InputFilter1.implementation=Pass_Through
;#dump: Dump the filtered data to a file.
InputFilter1.dump=false
;#dump_filename: Log path and filename.
InputFilter1.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse
;#reponse given a set of band edges, the desired reponse on those bands,
;#and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version.
InputFilter1.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version.
InputFilter1.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter1.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter1.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter1.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter1.band1_begin=0.0
InputFilter1.band1_end=0.45
InputFilter1.band2_begin=0.55
InputFilter1.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter1.ampl1_begin=1.0
InputFilter1.ampl1_end=1.0
InputFilter1.ampl2_begin=0.0
InputFilter1.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter1.band1_error=1.0
InputFilter1.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter1.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter1.grid_density=16
;# Original sampling frequency stored in the signal file
InputFilter1.sampling_frequency=20480000
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter1.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter1.IF=5499998.47412109
;# Decimation factor after the frequency tranaslating block
InputFilter1.decimation_factor=8
;######### RESAMPLER CONFIG 1 ############
;## Resamples the input data.
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation
Resampler1.implementation=Pass_Through
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_1C.count=4
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1
;#signal:
;# "1C" GPS L1 C/A
;# "2S" GPS L2 L2C (M)
;# "1B" GALILEO E1 B (I/NAV OS/CS/SoL)
;# "5X" GALILEO E5a I+Q
;# CHANNEL CONNECTION
Channel0.RF_channel_ID=0
Channel1.RF_channel_ID=1
Channel2.RF_channel_ID=0
Channel3.RF_channel_ID=1
;#signal:
;#if the option is disabled by default is assigned "1C" GPS L1 C/A
Channel0.signal=1C
Channel1.signal=1C
Channel2.signal=1C
Channel3.signal=1C
;######### SPECIFIC CHANNELS CONFIG ######
;#The following options are specific to each channel and overwrite the generic options
;######### ACQUISITION GLOBAL CONFIG ############
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1C.dump=false
;#filename: Log path and filename
Acquisition_1C.dump_filename=./acq_dump.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Acquisition_1C.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1C.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1C.coherent_integration_time_ms=1
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
;#threshold: Acquisition threshold. It will be ignored if pfa is defined.
Acquisition_1C.threshold=0.01
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;Acquisition_1C.pfa=0.01
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1C.doppler_max=8000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1C.doppler_step=500
;#bit_transition_flag: Enable or disable a strategy to deal with bit transitions in GPS signals: process two dwells and take
;#maximum test statistics. Only use with implementation: [GPS_L1_CA_PCPS_Acquisition]
;#(should not be used for Galileo_E1_PCPS_Ambiguous_Acquisition])
Acquisition_1C.bit_transition_flag=false
;#max_dwells: Maximum number of consecutive dwells to be processed. It will be ignored if bit_transition_flag=true
Acquisition_1C.max_dwells=1
;######### ACQUISITION CHANNELS CONFIG ######
;#The following options are specific to each channel and overwrite the generic options
;######### TRACKING GLOBAL CONFIG ############
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_PLL_C_Aid_Tracking]
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1C.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1C.if=0
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1C.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1C.dump_filename=./tracking_ch_
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1C.pll_bw_hz=40.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1C.dll_bw_hz=4.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1C.order=3;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5]
Tracking_1C.early_late_space_chips=0.5;
;######### TELEMETRY DECODER GPS CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C.dump=false
;#decimation factor
TelemetryDecoder_1C.decimation_factor=1;
;######### OBSERVABLES CONFIG ############
;#implementation: Use [GPS_L1_CA_Observables] for GPS L1 C/A.
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
;#implementation: Position Velocity and Time (PVT) implementation algorithm: Use [GPS_L1_CA_PVT] in this version.
PVT.implementation=Hybrid_PVT
;#averaging_depth: Number of PVT observations in the moving average algorithm
PVT.averaging_depth=10
;#flag_average: Enables the PVT averaging between output intervals (arithmetic mean) [true] or [false]
PVT.flag_averaging=true
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=100
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=500
;# KML, GeoJSON, NMEA and RTCM output configuration
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT
;#nmea_dump_filename: NMEA log path and filename
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea;
;#flag_nmea_tty_port: Enable or disable the NMEA log to a serial TTY port (Can be used with real hardware or virtual one)
PVT.flag_nmea_tty_port=false;
;#nmea_dump_devname: serial device descriptor for NMEA logging
PVT.nmea_dump_devname=/dev/pts/4
PVT.flag_rtcm_server=true
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false