mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2024-12-14 20:20:35 +00:00
172 lines
6.2 KiB
Python
172 lines
6.2 KiB
Python
"""
|
|
plotVEMLTracking.py
|
|
|
|
This function plots the tracking results for the given channel list.
|
|
|
|
Irene Pérez Riega, 2023. iperrie@inta.es
|
|
|
|
plotVEMLTracking(channelNr, trackResults, settings)
|
|
|
|
Args:
|
|
channelList - list of channels to be plotted.
|
|
trackResults - tracking results from the tracking function.
|
|
settings - receiver settings.
|
|
|
|
Modifiable in the file:
|
|
fig_path - Path where plots will be save
|
|
|
|
-----------------------------------------------------------------------------
|
|
|
|
GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
|
|
This file is part of GNSS-SDR.
|
|
|
|
Copyright (C) 2022 (see AUTHORS file for a list of contributors)
|
|
SPDX-License-Identifier: GPL-3.0-or-later
|
|
|
|
-----------------------------------------------------------------------------
|
|
"""
|
|
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import os
|
|
|
|
|
|
def plotVEMLTracking(channelNr, trackResults, settings):
|
|
|
|
# ---------- CHANGE HERE:
|
|
fig_path = '/home/labnav/Desktop/TEST_IRENE/PLOTS/VEMLTracking'
|
|
if not os.path.exists(fig_path):
|
|
os.makedirs(fig_path)
|
|
|
|
# Protection - if the list contains incorrect channel numbers
|
|
if channelNr in list(range(1,settings["numberOfChannels"]+1)):
|
|
|
|
plt.figure(figsize=(1920 / 120, 1080 / 120))
|
|
plt.clf()
|
|
plt.gcf().canvas.set_window_title(
|
|
f'Channel {channelNr} (PRN '
|
|
f'{trackResults[channelNr-1]["PRN"][0]}) results')
|
|
plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1,
|
|
hspace=0.4, wspace=0.4)
|
|
|
|
# Extract timeAxis and time_label
|
|
if 'prn_start_time_s' in trackResults[channelNr-1]:
|
|
timeAxis = trackResults[channelNr-1]['prn_start_time_s']
|
|
time_label = 'RX Time (s)'
|
|
else:
|
|
timeAxis = np.arange(1, len(trackResults[channelNr-1]['PRN']) + 1)
|
|
time_label = 'Epoch'
|
|
|
|
len_dataI = len (trackResults[channelNr-1]["data_I"])
|
|
len_dataQ = len (trackResults[channelNr-1]["data_Q"])
|
|
|
|
if len_dataI < len_dataQ:
|
|
dif = len_dataQ - len_dataI
|
|
trackResults[channelNr-1]["data_I"] = np.pad(
|
|
trackResults[channelNr-1]["data_I"], pad_width=(0,dif),
|
|
mode="constant", constant_values=0)
|
|
elif len_dataQ < len_dataI:
|
|
dif = len_dataI - len_dataQ
|
|
trackResults[channelNr-1]["data_Q"] = np.pad(
|
|
trackResults[channelNr-1]["data_Q"], pad_width=(0,dif),
|
|
mode="constant", constant_values=0 )
|
|
|
|
# Discrete-Time Scatter Plot
|
|
plt.subplot(3, 3, 1)
|
|
plt.plot(trackResults[channelNr-1]['data_I'],
|
|
trackResults[channelNr-1]['data_Q'], marker='.',
|
|
markersize=1, linestyle=' ')
|
|
plt.grid()
|
|
plt.axis('equal')
|
|
plt.title('Discrete-Time Scatter Plot', fontweight='bold')
|
|
plt.xlabel('I prompt')
|
|
plt.ylabel('Q prompt')
|
|
|
|
# Nav bits
|
|
plt.subplot(3, 3, (2, 3))
|
|
plt.plot(timeAxis, trackResults[channelNr-1]['data_I'],
|
|
linewidth=1)
|
|
plt.grid()
|
|
plt.title('Bits of the navigation message', fontweight='bold')
|
|
plt.xlabel(time_label)
|
|
plt.axis('tight')
|
|
|
|
# Raw PLL discriminator unfiltered
|
|
plt.subplot(3, 3, 4)
|
|
plt.plot(timeAxis, trackResults[channelNr-1]['pllDiscr'],
|
|
color='r', linewidth=1)
|
|
plt.grid()
|
|
plt.axis('tight')
|
|
plt.xlabel(time_label)
|
|
plt.ylabel('Amplitude')
|
|
plt.title('Raw PLL discriminator', fontweight='bold')
|
|
|
|
# Correlation results
|
|
plt.subplot(3, 3, (5, 6))
|
|
corr_data = [
|
|
np.sqrt(trackResults[channelNr-1]['I_VE'] ** 2 +
|
|
trackResults[channelNr-1]['Q_VE'] ** 2),
|
|
np.sqrt(trackResults[channelNr-1]['I_E'] ** 2 +
|
|
trackResults[channelNr-1]['Q_E'] ** 2),
|
|
np.sqrt(trackResults[channelNr-1]['I_P'] ** 2 +
|
|
trackResults[channelNr-1]['Q_P'] ** 2),
|
|
np.sqrt(trackResults[channelNr-1]['I_L'] ** 2 +
|
|
trackResults[channelNr-1]['Q_L'] ** 2),
|
|
np.sqrt(trackResults[channelNr-1]['I_VL'] ** 2 +
|
|
trackResults[channelNr-1]['Q_VL'] ** 2)
|
|
]
|
|
|
|
line = []
|
|
colors = ['b','#FF6600','#FFD700','purple','g']
|
|
|
|
for i, data in enumerate(corr_data):
|
|
line.append(plt.plot(timeAxis, data, label=f'Data {i+1}',
|
|
color=colors[i], marker='*', linestyle=' ',
|
|
linewidth=1))
|
|
|
|
plt.grid()
|
|
plt.title('Correlation results',fontweight='bold')
|
|
plt.xlabel(time_label)
|
|
plt.axis('tight')
|
|
plt.legend([r'$\sqrt{I_{VE}^2 + Q_{VE}^2}$',
|
|
r'$\sqrt{I_{E}^2 + Q_{E}^2}$',
|
|
r'$\sqrt{I_{P}^2 + Q_{P}^2}$',
|
|
r'$\sqrt{I_{L}^2 + Q_{L}^2}$',
|
|
r'$\sqrt{I_{VL}^2 + Q_{VL}^2}$'], loc='best')
|
|
|
|
# Filtered PLL discriminator
|
|
plt.subplot(3, 3, 7)
|
|
plt.plot(timeAxis, trackResults[channelNr-1]['pllDiscrFilt'],
|
|
'b', linewidth=1)
|
|
plt.grid()
|
|
plt.axis('tight')
|
|
plt.xlabel(time_label)
|
|
plt.ylabel('Amplitude')
|
|
plt.title('Filtered PLL discriminator', fontweight='bold')
|
|
|
|
# Raw DLL discriminator unfiltered
|
|
plt.subplot(3, 3, 8)
|
|
plt.plot(timeAxis, trackResults[channelNr-1]['dllDiscr'], 'r',
|
|
linewidth=1)
|
|
plt.grid()
|
|
plt.axis('tight')
|
|
plt.xlabel(time_label)
|
|
plt.ylabel('Amplitude')
|
|
plt.title('Raw DLL discriminator',fontweight='bold')
|
|
|
|
# Filtered DLL discriminator
|
|
plt.subplot(3, 3, 9)
|
|
plt.plot(timeAxis, trackResults[channelNr-1]['dllDiscrFilt'],
|
|
'b', linewidth=1)
|
|
plt.grid()
|
|
plt.axis('tight')
|
|
plt.xlabel(time_label)
|
|
plt.ylabel('Amplitude')
|
|
plt.title('Filtered DLL discriminator',fontweight='bold')
|
|
|
|
plt.savefig(os.path.join(fig_path,
|
|
f'Ch{channelNr}_PRN'
|
|
f'{trackResults[channelNr-1]["PRN"][0]}'
|
|
f'_results'))
|
|
plt.show()
|