1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-14 04:00:34 +00:00
gnss-sdr/utils/python/lib/plotKalman.py

141 lines
5.1 KiB
Python

"""
plotKalman.py
plotKalman (channelNr, trackResults, settings)
This function plots the tracking results for the given channel list.
Irene Pérez Riega, 2023. iperrie@inta.es
Args:
channelList - list of channels to be plotted.
trackResults - tracking results from the tracking function.
settings - receiver settings.
Modifiable in the file:
fig_path - Path where doppler plots will be save
-----------------------------------------------------------------------------
GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
This file is part of GNSS-SDR.
Copyright (C) 2022 (see AUTHORS file for a list of contributors)
SPDX-License-Identifier: GPL-3.0-or-later
-----------------------------------------------------------------------------
"""
import matplotlib.pyplot as plt
import numpy as np
import os
def plotKalman(channelNr, trackResults, settings):
# ---------- CHANGE HERE:
fig_path = '/home/labnav/Desktop/TEST_IRENE/PLOTS/PlotKalman'
if not os.path.exists(fig_path):
os.makedirs(fig_path)
# Protection - if the list contains incorrect channel numbers
channelNr = np.intersect1d(channelNr,
np.arange(1, settings['numberOfChannels'] + 1))
for channelNr in channelNr:
time_start = settings['timeStartInSeconds']
time_axis_in_seconds = np.arange(1, settings['msToProcess']+1)/1000
# Plot all figures
plt.figure(figsize=(1920 / 100, 1080 / 100))
plt.clf()
plt.gcf().canvas.set_window_title(
f'Channel {channelNr} (PRN '
f'{str(trackResults[channelNr-1]["PRN"][-2])}) results')
plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1,
hspace=0.4, wspace=0.4)
plt.tight_layout()
# Row 1
# ----- CNo for signal -----------------------------------------------
# Measure of the ratio between carrier signal power and noise power
plt.subplot(4, 2, 1)
plt.plot(time_axis_in_seconds,
trackResults[channelNr-1]['CNo'][:settings['msToProcess']],
'b')
plt.grid()
plt.axis('tight')
plt.xlabel('Time (s)')
plt.ylabel('CNo (dB-Hz)')
plt.title('Carrier to Noise Ratio', fontweight='bold')
# ----- PLL discriminator filtered -----------------------------------
plt.subplot(4, 2, 2)
plt.plot(time_axis_in_seconds,
trackResults[channelNr-1]['state1']
[:settings['msToProcess']], 'b')
plt.grid()
plt.axis('tight')
plt.xlim([time_start, time_axis_in_seconds[-1]])
plt.xlabel('Time (s)')
plt.ylabel('Phase Amplitude')
plt.title('Filtered Carrier Phase', fontweight='bold')
# Row 2
# ----- Carrier Frequency --------------------------------------------
# Filtered carrier frequency of (transmitted by a satellite)
# for a specific channel
plt.subplot(4, 2, 3)
plt.plot(time_axis_in_seconds[1:],
trackResults[channelNr-1]['state2']
[1:settings['msToProcess']], color=[0.42, 0.25, 0.39])
plt.grid()
plt.axis('auto')
plt.xlim(time_start, time_axis_in_seconds[-1])
plt.xlabel('Time (s)')
plt.ylabel('Freq (Hz)')
plt.title('Filtered Carrier Frequency', fontweight='bold')
# ----- Carrier Frequency Rate ---------------------------------------
plt.subplot(4, 2, 4)
plt.plot(time_axis_in_seconds[1:],
trackResults[channelNr-1]['state3']
[1:settings['msToProcess']], color=[0.42, 0.25, 0.39])
plt.grid()
plt.axis('auto')
plt.xlim(time_start, time_axis_in_seconds[-1])
plt.xlabel('Time (s)')
plt.ylabel('Freq (Hz)')
plt.title('Filtered Carrier Frequency Rate', fontweight='bold')
# Row 3
# ----- PLL discriminator unfiltered----------------------------------
plt.subplot(4, 2, (5,6))
plt.plot(time_axis_in_seconds,
trackResults[channelNr-1]['innovation'], 'r')
plt.grid()
plt.axis('auto')
plt.xlim(time_start, time_axis_in_seconds[-1])
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.title('Raw PLL discriminator (Innovation)',fontweight='bold')
# Row 4
# ----- PLL discriminator covariance ---------------------------------
plt.subplot(4, 2, (7,8))
plt.plot(time_axis_in_seconds,
trackResults[channelNr-1]['r_noise_cov'], 'r')
plt.grid()
plt.axis('auto')
plt.xlim(time_start, time_axis_in_seconds[-1])
plt.xlabel('Time (s)')
plt.ylabel('Variance')
plt.title('Estimated Noise Variance', fontweight='bold')
plt.tight_layout()
plt.savefig(os.path.join(fig_path,
f'kalman_ch{channelNr}_PRN_'
f'{trackResults[channelNr - 1]["PRN"][-1]}'
f'.png'))
plt.show()