mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2024-12-14 04:00:34 +00:00
141 lines
5.1 KiB
Python
141 lines
5.1 KiB
Python
"""
|
|
plotKalman.py
|
|
plotKalman (channelNr, trackResults, settings)
|
|
|
|
This function plots the tracking results for the given channel list.
|
|
|
|
Irene Pérez Riega, 2023. iperrie@inta.es
|
|
|
|
Args:
|
|
channelList - list of channels to be plotted.
|
|
trackResults - tracking results from the tracking function.
|
|
settings - receiver settings.
|
|
|
|
Modifiable in the file:
|
|
fig_path - Path where doppler plots will be save
|
|
|
|
-----------------------------------------------------------------------------
|
|
|
|
GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
|
|
This file is part of GNSS-SDR.
|
|
|
|
Copyright (C) 2022 (see AUTHORS file for a list of contributors)
|
|
SPDX-License-Identifier: GPL-3.0-or-later
|
|
|
|
-----------------------------------------------------------------------------
|
|
"""
|
|
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import os
|
|
|
|
|
|
def plotKalman(channelNr, trackResults, settings):
|
|
|
|
# ---------- CHANGE HERE:
|
|
fig_path = '/home/labnav/Desktop/TEST_IRENE/PLOTS/PlotKalman'
|
|
|
|
if not os.path.exists(fig_path):
|
|
os.makedirs(fig_path)
|
|
|
|
# Protection - if the list contains incorrect channel numbers
|
|
channelNr = np.intersect1d(channelNr,
|
|
np.arange(1, settings['numberOfChannels'] + 1))
|
|
|
|
for channelNr in channelNr:
|
|
time_start = settings['timeStartInSeconds']
|
|
time_axis_in_seconds = np.arange(1, settings['msToProcess']+1)/1000
|
|
|
|
# Plot all figures
|
|
plt.figure(figsize=(1920 / 100, 1080 / 100))
|
|
plt.clf()
|
|
plt.gcf().canvas.set_window_title(
|
|
f'Channel {channelNr} (PRN '
|
|
f'{str(trackResults[channelNr-1]["PRN"][-2])}) results')
|
|
plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1,
|
|
hspace=0.4, wspace=0.4)
|
|
plt.tight_layout()
|
|
|
|
# Row 1
|
|
# ----- CNo for signal -----------------------------------------------
|
|
# Measure of the ratio between carrier signal power and noise power
|
|
plt.subplot(4, 2, 1)
|
|
plt.plot(time_axis_in_seconds,
|
|
trackResults[channelNr-1]['CNo'][:settings['msToProcess']],
|
|
'b')
|
|
plt.grid()
|
|
plt.axis('tight')
|
|
plt.xlabel('Time (s)')
|
|
plt.ylabel('CNo (dB-Hz)')
|
|
plt.title('Carrier to Noise Ratio', fontweight='bold')
|
|
|
|
# ----- PLL discriminator filtered -----------------------------------
|
|
plt.subplot(4, 2, 2)
|
|
plt.plot(time_axis_in_seconds,
|
|
trackResults[channelNr-1]['state1']
|
|
[:settings['msToProcess']], 'b')
|
|
plt.grid()
|
|
plt.axis('tight')
|
|
plt.xlim([time_start, time_axis_in_seconds[-1]])
|
|
plt.xlabel('Time (s)')
|
|
plt.ylabel('Phase Amplitude')
|
|
plt.title('Filtered Carrier Phase', fontweight='bold')
|
|
|
|
# Row 2
|
|
# ----- Carrier Frequency --------------------------------------------
|
|
# Filtered carrier frequency of (transmitted by a satellite)
|
|
# for a specific channel
|
|
plt.subplot(4, 2, 3)
|
|
plt.plot(time_axis_in_seconds[1:],
|
|
trackResults[channelNr-1]['state2']
|
|
[1:settings['msToProcess']], color=[0.42, 0.25, 0.39])
|
|
plt.grid()
|
|
plt.axis('auto')
|
|
plt.xlim(time_start, time_axis_in_seconds[-1])
|
|
plt.xlabel('Time (s)')
|
|
plt.ylabel('Freq (Hz)')
|
|
plt.title('Filtered Carrier Frequency', fontweight='bold')
|
|
|
|
# ----- Carrier Frequency Rate ---------------------------------------
|
|
plt.subplot(4, 2, 4)
|
|
plt.plot(time_axis_in_seconds[1:],
|
|
trackResults[channelNr-1]['state3']
|
|
[1:settings['msToProcess']], color=[0.42, 0.25, 0.39])
|
|
plt.grid()
|
|
plt.axis('auto')
|
|
plt.xlim(time_start, time_axis_in_seconds[-1])
|
|
plt.xlabel('Time (s)')
|
|
plt.ylabel('Freq (Hz)')
|
|
plt.title('Filtered Carrier Frequency Rate', fontweight='bold')
|
|
|
|
# Row 3
|
|
# ----- PLL discriminator unfiltered----------------------------------
|
|
plt.subplot(4, 2, (5,6))
|
|
plt.plot(time_axis_in_seconds,
|
|
trackResults[channelNr-1]['innovation'], 'r')
|
|
plt.grid()
|
|
plt.axis('auto')
|
|
plt.xlim(time_start, time_axis_in_seconds[-1])
|
|
plt.xlabel('Time (s)')
|
|
plt.ylabel('Amplitude')
|
|
plt.title('Raw PLL discriminator (Innovation)',fontweight='bold')
|
|
|
|
# Row 4
|
|
# ----- PLL discriminator covariance ---------------------------------
|
|
plt.subplot(4, 2, (7,8))
|
|
plt.plot(time_axis_in_seconds,
|
|
trackResults[channelNr-1]['r_noise_cov'], 'r')
|
|
plt.grid()
|
|
plt.axis('auto')
|
|
plt.xlim(time_start, time_axis_in_seconds[-1])
|
|
plt.xlabel('Time (s)')
|
|
plt.ylabel('Variance')
|
|
plt.title('Estimated Noise Variance', fontweight='bold')
|
|
|
|
plt.tight_layout()
|
|
plt.savefig(os.path.join(fig_path,
|
|
f'kalman_ch{channelNr}_PRN_'
|
|
f'{trackResults[channelNr - 1]["PRN"][-1]}'
|
|
f'.png'))
|
|
plt.show()
|