gnss-sdr/src/algorithms/tracking/gnuradio_blocks/gps_l1_ca_dll_pll_tracking_...

560 lines
27 KiB
C++

/*!
* \file gps_l1_ca_dll_pll_tracking_gpu_cc.cc
* \brief Implementation of a code DLL + carrier PLL tracking block GPU ACCELERATED
* \author Javier Arribas, 2015. jarribas(at)cttc.es
*
* -----------------------------------------------------------------------------
*
* Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* SPDX-License-Identifier: GPL-3.0-or-later
*
* -----------------------------------------------------------------------------
*/
#include "gps_l1_ca_dll_pll_tracking_gpu_cc.h"
#include "GPS_L1_CA.h"
#include "gnss_satellite.h"
#include "gnss_sdr_flags.h"
#include "gps_sdr_signal_processing.h"
#include "lock_detectors.h"
#include "tracking_discriminators.h"
#include <boost/lexical_cast.hpp>
#include <glog/logging.h>
#include <gnuradio/io_signature.h>
#include <cmath>
#include <cuda_profiler_api.h>
#include <iostream>
#include <memory>
#include <sstream>
gps_l1_ca_dll_pll_tracking_gpu_cc_sptr
gps_l1_ca_dll_pll_make_tracking_gpu_cc(
int64_t fs_in,
uint32_t vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips)
{
return gps_l1_ca_dll_pll_tracking_gpu_cc_sptr(new Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc(
fs_in, vector_length, dump, dump_filename, pll_bw_hz, dll_bw_hz, early_late_space_chips));
}
void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::forecast(int noutput_items,
gr_vector_int &ninput_items_required)
{
if (noutput_items != 0)
{
ninput_items_required[0] = static_cast<int32_t>(d_vector_length) * 2; // set the required available samples in each call
}
}
Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc(
int64_t fs_in,
uint32_t vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips) : gr::block("Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
{
// Telemetry bit synchronization message port input
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
this->message_port_register_out(pmt::mp("events"));
this->message_port_register_in(pmt::mp("telemetry_to_trk"));
// initialize internal vars
d_dump = dump;
d_fs_in = fs_in;
d_vector_length = vector_length;
d_dump_filename = dump_filename;
d_correlation_length_samples = static_cast<int32_t>(d_vector_length);
// Initialize tracking ==========================================
d_code_loop_filter.set_DLL_BW(dll_bw_hz);
d_carrier_loop_filter.set_params(10.0, pll_bw_hz, 2);
// --- DLL variables -------------------------------------------------------
d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips)
// Set GPU flags
cudaSetDeviceFlags(cudaDeviceMapHost);
// allocate host memory
// pinned memory mode - use special function to get OS-pinned memory
d_n_correlator_taps = 3; // Early, Prompt, and Late
// Get space for a vector with the C/A code replica sampled 1x/chip
cudaHostAlloc(reinterpret_cast<void **>(&d_ca_code), (static_cast<int32_t>(GPS_L1_CA_CODE_LENGTH_CHIPS) * sizeof(gr_complex)), cudaHostAllocMapped || cudaHostAllocWriteCombined);
// Get space for the resampled early / prompt / late local replicas
cudaHostAlloc(reinterpret_cast<void **>(&d_local_code_shift_chips), d_n_correlator_taps * sizeof(float), cudaHostAllocMapped || cudaHostAllocWriteCombined);
cudaHostAlloc(reinterpret_cast<void **>(&in_gpu), 2 * d_vector_length * sizeof(gr_complex), cudaHostAllocMapped || cudaHostAllocWriteCombined);
// correlator outputs (scalar)
cudaHostAlloc(reinterpret_cast<void **>(&d_correlator_outs), sizeof(gr_complex) * d_n_correlator_taps, cudaHostAllocMapped || cudaHostAllocWriteCombined);
// Set TAPs delay values [chips]
d_local_code_shift_chips[0] = -d_early_late_spc_chips;
d_local_code_shift_chips[1] = 0.0;
d_local_code_shift_chips[2] = d_early_late_spc_chips;
// --- Perform initializations ------------------------------
multicorrelator_gpu = new cuda_multicorrelator();
// local code resampler on GPU
multicorrelator_gpu->init_cuda_integrated_resampler(2 * d_vector_length, GPS_L1_CA_CODE_LENGTH_CHIPS, d_n_correlator_taps);
multicorrelator_gpu->set_input_output_vectors(d_correlator_outs, in_gpu);
// define initial code frequency basis of NCO
d_code_freq_chips = GPS_L1_CA_CODE_RATE_CPS;
// define residual code phase (in chips)
d_rem_code_phase_samples = 0.0;
// define residual carrier phase
d_rem_carrier_phase_rad = 0.0;
// sample synchronization
d_sample_counter = 0ULL;
// d_sample_counter_seconds = 0;
d_acq_sample_stamp = 0;
d_enable_tracking = false;
d_pull_in = false;
// CN0 estimation and lock detector buffers
d_cn0_estimation_counter = 0;
d_Prompt_buffer = std::vector<gr_complex>(FLAGS_cn0_samples);
d_carrier_lock_test = 1;
d_CN0_SNV_dB_Hz = 0;
d_carrier_lock_fail_counter = 0;
d_carrier_lock_threshold = FLAGS_carrier_lock_th;
systemName["G"] = std::string("GPS");
systemName["S"] = std::string("SBAS");
set_relative_rate(1.0 / (static_cast<double>(d_vector_length) * 2.0));
d_acquisition_gnss_synchro = 0;
d_channel = 0;
d_acq_code_phase_samples = 0.0;
d_acq_carrier_doppler_hz = 0.0;
d_carrier_doppler_hz = 0.0;
d_acc_carrier_phase_cycles = 0.0;
d_code_phase_samples = 0.0;
d_pll_to_dll_assist_secs_Ti = 0.0;
d_rem_code_phase_chips = 0.0;
d_code_phase_step_chips = 0.0;
d_carrier_phase_step_rad = 0.0;
d_acc_carrier_phase_initialized = false;
// set_min_output_buffer((int64_t)300);
}
void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::start_tracking()
{
/*
* correct the code phase according to the delay between acq and trk
*/
d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples;
d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz;
d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples;
const int64_t acq_trk_diff_samples = static_cast<int64_t>(d_sample_counter) - static_cast<int64_t>(d_acq_sample_stamp); // -d_vector_length;
DLOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples;
const double acq_trk_diff_seconds = static_cast<double>(acq_trk_diff_samples) / static_cast<double>(d_fs_in);
// doppler effect
// Fd=(C/(C+Vr))*F
const double radial_velocity = (GPS_L1_FREQ_HZ + d_acq_carrier_doppler_hz) / GPS_L1_FREQ_HZ;
// new chip and prn sequence periods based on acq Doppler
d_code_freq_chips = radial_velocity * GPS_L1_CA_CODE_RATE_CPS;
d_code_phase_step_chips = static_cast<double>(d_code_freq_chips) / static_cast<double>(d_fs_in);
const double T_chip_mod_seconds = 1 / d_code_freq_chips;
const double T_prn_mod_seconds = T_chip_mod_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
const double T_prn_mod_samples = T_prn_mod_seconds * static_cast<double>(d_fs_in);
d_correlation_length_samples = round(T_prn_mod_samples);
const double T_prn_true_seconds = GPS_L1_CA_CODE_LENGTH_CHIPS / GPS_L1_CA_CODE_RATE_CPS;
const double T_prn_true_samples = T_prn_true_seconds * static_cast<double>(d_fs_in);
const double T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds;
const double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
double corrected_acq_phase_samples, delay_correction_samples;
corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<double>(d_fs_in)), T_prn_true_samples);
if (corrected_acq_phase_samples < 0)
{
corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples;
}
delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples;
d_acq_code_phase_samples = corrected_acq_phase_samples;
d_carrier_doppler_hz = d_acq_carrier_doppler_hz;
d_carrier_phase_step_rad = TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
// DLL/PLL filter initialization
d_carrier_loop_filter.initialize(d_acq_carrier_doppler_hz); // The carrier loop filter implements the Doppler accumulator
d_code_loop_filter.initialize(); // initialize the code filter
// generate local reference ALWAYS starting at chip 1 (1 sample per chip)
gps_l1_ca_code_gen_complex(own::span<gr_complex>(d_ca_code, static_cast<int32_t>(GPS_L1_CA_CODE_LENGTH_CHIPS)), d_acquisition_gnss_synchro->PRN, 0);
multicorrelator_gpu->set_local_code_and_taps(static_cast<int32_t>(GPS_L1_CA_CODE_LENGTH_CHIPS), d_ca_code, d_local_code_shift_chips, d_n_correlator_taps);
for (int32_t n = 0; n < d_n_correlator_taps; n++)
{
d_correlator_outs[n] = gr_complex(0, 0);
}
d_carrier_lock_fail_counter = 0;
d_rem_code_phase_samples = 0.0;
d_rem_carrier_phase_rad = 0.0;
d_rem_code_phase_chips = 0.0;
d_acc_carrier_phase_cycles = 0.0;
d_pll_to_dll_assist_secs_Ti = 0.0;
d_code_phase_samples = d_acq_code_phase_samples;
const std::string sys_ = &d_acquisition_gnss_synchro->System;
sys = sys_.substr(0, 1);
// DEBUG OUTPUT
std::cout << "Tracking of GPS L1 C/A signal started on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << '\n';
LOG(INFO) << "Tracking of GPS L1 C/A signal for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel;
// enable tracking
d_pull_in = true;
d_enable_tracking = true;
d_acc_carrier_phase_initialized = false;
LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz
<< " Code Phase correction [samples]=" << delay_correction_samples
<< " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples;
}
Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::~Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc()
{
if (d_dump_file.is_open())
{
try
{
d_dump_file.close();
}
catch (const std::exception &ex)
{
LOG(WARNING) << "Exception in destructor " << ex.what();
}
}
try
{
cudaFreeHost(in_gpu);
cudaFreeHost(d_correlator_outs);
cudaFreeHost(d_local_code_shift_chips);
cudaFreeHost(d_ca_code);
multicorrelator_gpu->free_cuda();
delete (multicorrelator_gpu);
}
catch (const std::exception &ex)
{
LOG(WARNING) << "Exception in destructor " << ex.what();
}
}
void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::set_channel(uint32_t channel)
{
d_channel = channel;
LOG(INFO) << "Tracking Channel set to " << d_channel;
// ############# ENABLE DATA FILE LOG #################
if (d_dump == true)
{
if (d_dump_file.is_open() == false)
{
try
{
d_dump_filename.append(boost::lexical_cast<std::string>(d_channel));
d_dump_filename.append(".dat");
d_dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str();
}
catch (const std::ifstream::failure *e)
{
LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e->what();
}
}
}
}
void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::set_gnss_synchro(Gnss_Synchro *p_gnss_synchro)
{
d_acquisition_gnss_synchro = p_gnss_synchro;
}
void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::check_carrier_phase_coherent_initialization()
{
if (d_acc_carrier_phase_initialized == false)
{
d_acc_carrier_phase_cycles = -d_rem_carrier_phase_rad / TWO_PI;
d_acc_carrier_phase_initialized = true;
}
}
int Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::general_work(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)),
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
// Block input data and block output stream pointers
const gr_complex *in = reinterpret_cast<const gr_complex *>(input_items[0]);
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro current_synchro_data = Gnss_Synchro();
// process vars
double code_error_chips_Ti = 0.0;
double code_error_filt_chips = 0.0;
double code_error_filt_secs_Ti = 0.0;
double CURRENT_INTEGRATION_TIME_S = 0.001;
double CORRECTED_INTEGRATION_TIME_S = 0.001;
double dll_code_error_secs_Ti = 0.0;
double carr_phase_error_secs_Ti = 0.0;
bool loss_of_lock = false;
if (d_enable_tracking == true)
{
// Fill the acquisition data
current_synchro_data = *d_acquisition_gnss_synchro;
// Receiver signal alignment
if (d_pull_in == true)
{
const int32_t acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
const double acq_trk_shif_correction_samples = d_correlation_length_samples - fmod(static_cast<double>(acq_to_trk_delay_samples), static_cast<double>(d_correlation_length_samples));
const int32_t samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
current_synchro_data.Tracking_sample_counter = d_sample_counter + static_cast<uint64_t>(samples_offset);
current_synchro_data.fs = d_fs_in;
current_synchro_data.correlation_length_ms = 1;
*out[0] = current_synchro_data;
d_sample_counter += static_cast<uint64_t>(samples_offset); // count for the processed samples
d_pull_in = false;
consume_each(samples_offset); // shift input to perform alignment with local replica
return 1;
}
// ################# CARRIER WIPEOFF AND CORRELATORS ##############################
// perform carrier wipe-off and compute Early, Prompt and Late correlation
memcpy(in_gpu, in, sizeof(gr_complex) * d_correlation_length_samples);
cudaProfilerStart();
multicorrelator_gpu->Carrier_wipeoff_multicorrelator_resampler_cuda(static_cast<float>(d_rem_carrier_phase_rad),
static_cast<float>(d_carrier_phase_step_rad),
static_cast<float>(d_code_phase_step_chips),
static_cast<float>(d_rem_code_phase_chips),
d_correlation_length_samples, d_n_correlator_taps);
cudaProfilerStop();
// std::cout<<"c_out[0]="<<d_correlator_outs[0]<<"c_out[1]="<<d_correlator_outs[1]<<"c_out[2]="<<d_correlator_outs[2]<< '\n';
// UPDATE INTEGRATION TIME
CURRENT_INTEGRATION_TIME_S = static_cast<double>(d_correlation_length_samples) / static_cast<double>(d_fs_in);
// ################## PLL ##########################################################
// Update PLL discriminator [rads/Ti -> Secs/Ti]
carr_phase_error_secs_Ti = pll_cloop_two_quadrant_atan(d_correlator_outs[1]) / TWO_PI; // prompt output
// Carrier discriminator filter
// NOTICE: The carrier loop filter includes the Carrier Doppler accumulator, as described in Kaplan
// d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_phase_error_filt_secs_ti/INTEGRATION_TIME;
// Input [s/Ti] -> output [Hz]
d_carrier_doppler_hz = d_carrier_loop_filter.get_carrier_error(0.0, carr_phase_error_secs_Ti, CURRENT_INTEGRATION_TIME_S);
// PLL to DLL assistance [Secs/Ti]
d_pll_to_dll_assist_secs_Ti = (d_carrier_doppler_hz * CURRENT_INTEGRATION_TIME_S) / GPS_L1_FREQ_HZ;
// code Doppler frequency update
d_code_freq_chips = GPS_L1_CA_CODE_RATE_CPS + ((d_carrier_doppler_hz * GPS_L1_CA_CODE_RATE_CPS) / GPS_L1_FREQ_HZ);
// ################## DLL ##########################################################
// DLL discriminator
code_error_chips_Ti = dll_nc_e_minus_l_normalized(d_correlator_outs[0], d_correlator_outs[2], d_early_late_spc_chips, 1.0); // [chips/Ti] // early and late
// Code discriminator filter
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips_Ti); // input [chips/Ti] -> output [chips/second]
code_error_filt_secs_Ti = code_error_filt_chips * CURRENT_INTEGRATION_TIME_S / d_code_freq_chips; // [s/Ti]
// DLL code error estimation [s/Ti]
// TODO: PLL carrier aid to DLL is disabled. Re-enable it and measure performance
dll_code_error_secs_Ti = -code_error_filt_secs_Ti + d_pll_to_dll_assist_secs_Ti;
// ################## CARRIER AND CODE NCO BUFFER ALIGNMENT #######################
// keep alignment parameters for the next input buffer
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
const double T_chip_seconds = 1 / d_code_freq_chips;
const double T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
const double T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
const double K_blk_samples = T_prn_samples + d_rem_code_phase_samples - dll_code_error_secs_Ti * static_cast<double>(d_fs_in);
d_correlation_length_samples = round(K_blk_samples); // round to a discrete samples
d_rem_code_phase_samples = K_blk_samples - static_cast<double>(d_correlation_length_samples); // rounding error < 1 sample
// UPDATE REMNANT CARRIER PHASE
CORRECTED_INTEGRATION_TIME_S = (static_cast<double>(d_correlation_length_samples) / static_cast<double>(d_fs_in));
// remnant carrier phase [rad]
d_rem_carrier_phase_rad = fmod(d_rem_carrier_phase_rad + TWO_PI * d_carrier_doppler_hz * CORRECTED_INTEGRATION_TIME_S, TWO_PI);
// UPDATE CARRIER PHASE ACCUULATOR
// carrier phase accumulator prior to update the PLL estimators (accumulated carrier in this loop depends on the old estimations!)
d_acc_carrier_phase_cycles -= d_carrier_doppler_hz * CORRECTED_INTEGRATION_TIME_S;
// ################### PLL COMMANDS #################################################
// carrier phase step (NCO phase increment per sample) [rads/sample]
d_carrier_phase_step_rad = TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
// ################### DLL COMMANDS #################################################
// code phase step (Code resampler phase increment per sample) [chips/sample]
d_code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in);
// remnant code phase [chips]
d_rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / static_cast<double>(d_fs_in));
// ####### CN0 ESTIMATION AND LOCK DETECTORS #######################################
if (d_cn0_estimation_counter < FLAGS_cn0_samples)
{
// fill buffer with prompt correlator output values
d_Prompt_buffer[d_cn0_estimation_counter] = d_correlator_outs[1]; // prompt
d_cn0_estimation_counter++;
}
else
{
d_cn0_estimation_counter = 0;
// Code lock indicator
d_CN0_SNV_dB_Hz = cn0_m2m4_estimator(d_Prompt_buffer.data(), FLAGS_cn0_samples, GPS_L1_CA_CODE_PERIOD_S);
// Carrier lock indicator
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer.data(), FLAGS_cn0_samples);
// Loss of lock detection
if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < FLAGS_cn0_min)
{
d_carrier_lock_fail_counter++;
}
else
{
if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--;
}
if (d_carrier_lock_fail_counter > FLAGS_max_lock_fail)
{
std::cout << "Loss of lock in channel " << d_channel << "!\n";
LOG(INFO) << "Loss of lock in channel " << d_channel << "!";
this->message_port_pub(pmt::mp("events"), pmt::from_long(3)); // 3 -> loss of lock
d_carrier_lock_fail_counter = 0;
d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine
loss_of_lock = true;
}
check_carrier_phase_coherent_initialization();
}
// ########### Output the tracking data to navigation and PVT ##########
current_synchro_data.Prompt_I = static_cast<double>((d_correlator_outs[1]).real());
current_synchro_data.Prompt_Q = static_cast<double>((d_correlator_outs[1]).imag());
current_synchro_data.Tracking_sample_counter = d_sample_counter + static_cast<uint64_t>(d_correlation_length_samples);
current_synchro_data.Code_phase_samples = d_rem_code_phase_samples;
current_synchro_data.Carrier_phase_rads = TWO_PI * d_acc_carrier_phase_cycles;
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
current_synchro_data.Flag_valid_symbol_output = !loss_of_lock;
current_synchro_data.correlation_length_ms = 1;
}
else
{
for (int32_t n = 0; n < d_n_correlator_taps; n++)
{
d_correlator_outs[n] = gr_complex(0, 0);
}
current_synchro_data.System = {'G'};
current_synchro_data.correlation_length_ms = 1;
current_synchro_data.Tracking_sample_counter = d_sample_counter + static_cast<uint64_t>(d_correlation_length_samples);
}
// assign the GNU Radio block output data
current_synchro_data.fs = d_fs_in;
*out[0] = current_synchro_data;
if (d_dump)
{
// MULTIPLEXED FILE RECORDING - Record results to file
float prompt_I;
float prompt_Q;
float tmp_E, tmp_P, tmp_L;
float tmp_VE = 0.0;
float tmp_VL = 0.0;
float tmp_float;
prompt_I = d_correlator_outs[1].real();
prompt_Q = d_correlator_outs[1].imag();
tmp_E = std::abs<float>(d_correlator_outs[0]);
tmp_P = std::abs<float>(d_correlator_outs[1]);
tmp_L = std::abs<float>(d_correlator_outs[2]);
try
{
// Dump correlators output
d_dump_file.write(reinterpret_cast<char *>(&tmp_VE), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&tmp_E), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&tmp_P), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&tmp_L), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&tmp_VL), sizeof(float));
// PROMPT I and Q (to analyze navigation symbols)
d_dump_file.write(reinterpret_cast<char *>(&prompt_I), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&prompt_Q), sizeof(float));
// PRN start sample stamp
d_dump_file.write(reinterpret_cast<char *>(&d_sample_counter), sizeof(uint64_t));
// accumulated carrier phase
tmp_float = static_cast<float>(d_acc_carrier_phase_cycles * TWO_PI);
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
// carrier and code frequency
tmp_float = static_cast<float>(d_carrier_doppler_hz);
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
tmp_float = static_cast<float>(d_code_freq_chips);
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
// PLL commands
tmp_float = 1.0 / (carr_phase_error_secs_Ti * CURRENT_INTEGRATION_TIME_S);
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
tmp_float = 1.0 / (code_error_filt_secs_Ti * CURRENT_INTEGRATION_TIME_S);
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
// DLL commands
tmp_float = code_error_chips_Ti * CURRENT_INTEGRATION_TIME_S;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
tmp_float = code_error_filt_secs_Ti;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
// CN0 and carrier lock test
tmp_float = static_cast<float>(d_CN0_SNV_dB_Hz);
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
tmp_float = static_cast<float>(d_carrier_lock_test);
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
// AUX vars (for debug purposes)
tmp_float = code_error_chips_Ti * CURRENT_INTEGRATION_TIME_S;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
double tmp_double = static_cast<double>(d_sample_counter + d_correlation_length_samples);
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
// PRN
uint32_t prn_ = d_acquisition_gnss_synchro->PRN;
d_dump_file.write(reinterpret_cast<char *>(&prn_), sizeof(uint32_t));
}
catch (const std::ifstream::failure *e)
{
LOG(WARNING) << "Exception writing trk dump file " << e->what();
}
}
consume_each(d_correlation_length_samples); // this is necessary in gr::block derivates
d_sample_counter += d_correlation_length_samples; // count for the processed samples
if (d_enable_tracking || loss_of_lock)
{
return 1;
}
else
{
return 0;
}
}