mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2024-12-16 13:10:35 +00:00
141 lines
6.0 KiB
C++
141 lines
6.0 KiB
C++
/*!
|
|
* \file galileo_e5_signal_processing.cc
|
|
* \brief This library implements various functions for Galileo E5 signals such
|
|
* as replica code generation
|
|
* \author Marc Sales, 2014. marcsales92(at)gmail.com
|
|
*
|
|
* Detailed description of the file here if needed.
|
|
*
|
|
* -------------------------------------------------------------------------
|
|
*
|
|
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
|
|
*
|
|
* GNSS-SDR is a software defined Global Navigation
|
|
* Satellite Systems receiver
|
|
*
|
|
* This file is part of GNSS-SDR.
|
|
*
|
|
* GNSS-SDR is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* GNSS-SDR is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* -------------------------------------------------------------------------
|
|
*/
|
|
|
|
#include "galileo_e5_signal_processing.h"
|
|
#include <gnuradio/math.h>
|
|
#include "Galileo_E5a.h"
|
|
#include "gnss_signal_processing.h"
|
|
|
|
|
|
|
|
void galileo_e5_a_code_gen_complex_primary(std::complex<float>* _dest, signed int _prn, char _Signal[3])
|
|
{
|
|
unsigned int prn = _prn - 1;
|
|
unsigned int index = 0;
|
|
int a[4];
|
|
if ((_prn < 1) || (_prn > 50))
|
|
{
|
|
return;
|
|
}
|
|
if (_Signal[0] == '5' && _Signal[1] == 'Q')
|
|
{
|
|
for (size_t i = 0; i < Galileo_E5a_Q_PRIMARY_CODE[prn].length() - 1; i++)
|
|
{
|
|
hex_to_binary_converter(a, Galileo_E5a_Q_PRIMARY_CODE[prn].at(i));
|
|
_dest[index] = std::complex<float>(0.0, float(a[0]));
|
|
_dest[index + 1] = std::complex<float>(0.0, float(a[1]));
|
|
_dest[index + 2] = std::complex<float>(0.0, float(a[2]));
|
|
_dest[index + 3] = std::complex<float>(0.0, float(a[3]));
|
|
index = index + 4;
|
|
}
|
|
// last 2 bits are filled up zeros
|
|
hex_to_binary_converter(a, Galileo_E5a_Q_PRIMARY_CODE[prn].at(Galileo_E5a_Q_PRIMARY_CODE[prn].length() - 1));
|
|
_dest[index] = std::complex<float>(float(0.0), a[0]);
|
|
_dest[index + 1] = std::complex<float>(float(0.0), a[1]);
|
|
}
|
|
else if (_Signal[0] == '5' && _Signal[1] == 'I')
|
|
{
|
|
for (size_t i = 0; i < Galileo_E5a_I_PRIMARY_CODE[prn].length() - 1; i++)
|
|
{
|
|
hex_to_binary_converter(a, Galileo_E5a_I_PRIMARY_CODE[prn].at(i));
|
|
_dest[index] = std::complex<float>(float(a[0]), 0.0);
|
|
_dest[index + 1] = std::complex<float>(float(a[1]), 0.0);
|
|
_dest[index + 2] = std::complex<float>(float(a[2]), 0.0);
|
|
_dest[index + 3] = std::complex<float>(float(a[3]), 0.0);
|
|
index = index + 4;
|
|
}
|
|
// last 2 bits are filled up zeros
|
|
hex_to_binary_converter(a, Galileo_E5a_I_PRIMARY_CODE[prn].at(Galileo_E5a_I_PRIMARY_CODE[prn].length() - 1));
|
|
_dest[index] = std::complex<float>(float(a[0]), 0.0);
|
|
_dest[index + 1] = std::complex<float>(float(a[1]), 0.0);
|
|
}
|
|
else if (_Signal[0] == '5' && _Signal[1] == 'X')
|
|
{
|
|
int b[4];
|
|
for (size_t i = 0; i < Galileo_E5a_I_PRIMARY_CODE[prn].length() - 1; i++)
|
|
{
|
|
hex_to_binary_converter(a, Galileo_E5a_I_PRIMARY_CODE[prn].at(i));
|
|
hex_to_binary_converter(b, Galileo_E5a_Q_PRIMARY_CODE[prn].at(i));
|
|
_dest[index] = std::complex<float>(float(a[0]),float(b[0]));
|
|
_dest[index + 1] = std::complex<float>(float(a[1]),float(b[1]));
|
|
_dest[index + 2] = std::complex<float>(float(a[2]),float(b[2]));
|
|
_dest[index + 3] = std::complex<float>(float(a[3]),float(b[3]));
|
|
index = index + 4;
|
|
}
|
|
// last 2 bits are filled up zeros
|
|
hex_to_binary_converter(a, Galileo_E5a_I_PRIMARY_CODE[prn].at(Galileo_E5a_I_PRIMARY_CODE[prn].length() - 1));
|
|
hex_to_binary_converter(b, Galileo_E5a_Q_PRIMARY_CODE[prn].at(Galileo_E5a_Q_PRIMARY_CODE[prn].length() - 1));
|
|
_dest[index] = std::complex<float>(float(a[0]), float(b[0]));
|
|
_dest[index + 1] = std::complex<float>(float(a[1]), float(b[1]));
|
|
}
|
|
}
|
|
|
|
void galileo_e5_a_code_gen_complex_sampled(std::complex<float>* _dest, char _Signal[3],
|
|
unsigned int _prn, signed int _fs, unsigned int _chip_shift)
|
|
{
|
|
unsigned int _samplesPerCode;
|
|
unsigned int delay;
|
|
const unsigned int _codeLength = Galileo_E5a_CODE_LENGTH_CHIPS;
|
|
const int _codeFreqBasis = Galileo_E5a_CODE_CHIP_RATE_HZ;
|
|
|
|
std::complex<float>* _code = new std::complex<float>[_codeLength]();
|
|
|
|
galileo_e5_a_code_gen_complex_primary(_code , _prn , _Signal);
|
|
|
|
_samplesPerCode = static_cast<unsigned int>(static_cast<double>(_fs) / ( static_cast<double>(_codeFreqBasis) / static_cast<double>(_codeLength)));
|
|
|
|
delay = ((_codeLength - _chip_shift) % _codeLength) * _samplesPerCode / _codeLength;
|
|
|
|
if (_fs != _codeFreqBasis)
|
|
{
|
|
std::complex<float>* _resampled_signal;
|
|
if (posix_memalign((void**)&_resampled_signal, 16, _samplesPerCode * sizeof(gr_complex)) == 0){};
|
|
resampler(_code, _resampled_signal, _codeFreqBasis, _fs, _codeLength, _samplesPerCode); //resamples code to fs
|
|
delete[] _code;
|
|
_code = _resampled_signal;
|
|
}
|
|
|
|
for (unsigned int i = 0; i < _samplesPerCode; i++)
|
|
{
|
|
_dest[(i + delay) % _samplesPerCode] = _code[i];
|
|
}
|
|
if (_fs != _codeFreqBasis)
|
|
{
|
|
free(_code);
|
|
}
|
|
else
|
|
{
|
|
delete[] _code;
|
|
}
|
|
}
|