1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-11-18 07:44:57 +00:00
gnss-sdr/src/algorithms/tracking/libs/bayesian_estimation.cc
2018-08-21 15:20:48 +02:00

188 lines
5.3 KiB
C++

/*!
* \file bayesian_estimation.cc
* \brief Interface of a library with Bayesian noise statistic estimation
*
* Bayesian_estimator is a Bayesian estimator which attempts to estimate
* the properties of a stochastic process based on a sequence of
* discrete samples of the sequence.
*
* [1] TODO: Refs
*
* \authors <ul>
* <li> Gerald LaMountain, 2018. gerald(at)ece.neu.edu
* <li> Jordi Vila-Valls 2018. jvila(at)cttc.es
* </ul>
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "bayesian_estimation.h"
Bayesian_estimator::Bayesian_estimator()
{
int ny = 1;
mu_prior = arma::zeros(ny, 1);
kappa_prior = 0;
nu_prior = 0;
Psi_prior = arma::eye(ny, ny) * (nu_prior + ny + 1);
mu_est = mu_prior;
Psi_est = Psi_prior;
}
Bayesian_estimator::Bayesian_estimator(int ny)
{
mu_prior = arma::zeros(ny, 1);
kappa_prior = 0;
nu_prior = 0;
Psi_prior = arma::eye(ny, ny) * (nu_prior + ny + 1);
mu_est = mu_prior;
Psi_est = Psi_prior;
}
Bayesian_estimator::Bayesian_estimator(const arma::vec& mu_prior_0, int kappa_prior_0, int nu_prior_0, const arma::mat& Psi_prior_0)
{
mu_prior = mu_prior_0;
kappa_prior = kappa_prior_0;
nu_prior = nu_prior_0;
Psi_prior = Psi_prior_0;
mu_est = mu_prior;
Psi_est = Psi_prior;
}
Bayesian_estimator::~Bayesian_estimator()
{
}
void Bayesian_estimator::init(const arma::mat& mu_prior_0, int kappa_prior_0, int nu_prior_0, const arma::mat& Psi_prior_0)
{
mu_prior = mu_prior_0;
kappa_prior = kappa_prior_0;
nu_prior = nu_prior_0;
Psi_prior = Psi_prior_0;
mu_est = mu_prior;
Psi_est = Psi_prior;
}
/*
* Perform Bayesian noise estimation using the normal-inverse-Wishart priors stored in
* the class structure, and update the priors according to the computed posteriors
*/
void Bayesian_estimator::update_sequential(const arma::vec& data)
{
int K = data.n_cols;
int ny = data.n_rows;
if (mu_prior.is_empty())
{
mu_prior = arma::zeros(ny, 1);
}
if (Psi_prior.is_empty())
{
Psi_prior = arma::zeros(ny, ny);
}
arma::vec y_mean = arma::mean(data, 1);
arma::mat Psi_N = arma::zeros(ny, ny);
for (int kk = 0; kk < K; kk++)
{
Psi_N = Psi_N + (data.col(kk) - y_mean) * ((data.col(kk) - y_mean).t());
}
arma::vec mu_posterior = (kappa_prior * mu_prior + K * y_mean) / (kappa_prior + K);
int kappa_posterior = kappa_prior + K;
int nu_posterior = nu_prior + K;
arma::mat Psi_posterior = Psi_prior + Psi_N + (kappa_prior * K) / (kappa_prior + K) * (y_mean - mu_prior) * ((y_mean - mu_prior).t());
mu_est = mu_posterior;
if ((nu_posterior - ny - 1) > 0)
{
Psi_est = Psi_posterior / (nu_posterior - ny - 1);
}
else
{
Psi_est = Psi_posterior / (nu_posterior + ny + 1);
}
mu_prior = mu_posterior;
kappa_prior = kappa_posterior;
nu_prior = nu_posterior;
Psi_prior = Psi_posterior;
}
/*
* Perform Bayesian noise estimation using a new set of normal-inverse-Wishart priors
* and update the priors according to the computed posteriors
*/
void Bayesian_estimator::update_sequential(const arma::vec& data, const arma::vec& mu_prior_0, int kappa_prior_0, int nu_prior_0, const arma::mat& Psi_prior_0)
{
int K = data.n_cols;
int ny = data.n_rows;
arma::vec y_mean = arma::mean(data, 1);
arma::mat Psi_N = arma::zeros(ny, ny);
for (int kk = 0; kk < K; kk++)
{
Psi_N = Psi_N + (data.col(kk) - y_mean) * ((data.col(kk) - y_mean).t());
}
arma::vec mu_posterior = (kappa_prior_0 * mu_prior_0 + K * y_mean) / (kappa_prior_0 + K);
int kappa_posterior = kappa_prior_0 + K;
int nu_posterior = nu_prior_0 + K;
arma::mat Psi_posterior = Psi_prior_0 + Psi_N + (kappa_prior_0 * K) / (kappa_prior_0 + K) * (y_mean - mu_prior_0) * ((y_mean - mu_prior_0).t());
mu_est = mu_posterior;
if ((nu_posterior - ny - 1) > 0)
{
Psi_est = Psi_posterior / (nu_posterior - ny - 1);
}
else
{
Psi_est = Psi_posterior / (nu_posterior + ny + 1);
}
mu_prior = mu_posterior;
kappa_prior = kappa_posterior;
nu_prior = nu_posterior;
Psi_prior = Psi_posterior;
}
arma::mat Bayesian_estimator::get_mu_est() const
{
return mu_est;
}
arma::mat Bayesian_estimator::get_Psi_est() const
{
return Psi_est;
}