gnss-sdr/src/algorithms/signal_source/gnuradio_blocks/unpack_2bit_samples.cc

224 lines
7.3 KiB
C++

/*!
* \file unpack_2bit_samples.cc
*
* \brief Unpacks 2 bit samples that have been packed into bytes or shorts
* \author Cillian O'Driscoll cillian.odriscoll (at) gmail.com
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "unpack_2bit_samples.h"
#include <gnuradio/io_signature.h>
struct byte_2bit_struct
{
signed sample_0 : 2; // <- 2 bits wide only
signed sample_1 : 2; // <- 2 bits wide only
signed sample_2 : 2; // <- 2 bits wide only
signed sample_3 : 2; // <- 2 bits wide only
};
union byte_and_samples
{
int8_t byte;
byte_2bit_struct samples;
};
bool systemIsBigEndian()
{
union
{
uint32_t i;
char c[4];
} test_int = {0x01020304};
return test_int.c[0] == 1;
}
bool systemBytesAreBigEndian()
{
byte_and_samples b{};
b.byte = static_cast<int8_t>(0x01);
if (*reinterpret_cast<char *>(&b.byte) == 1)
{
return false;
}
return true;
}
void swapEndianness(int8_t const *in, std::vector<int8_t> &out, size_t item_size, unsigned int ninput_items)
{
unsigned int i;
unsigned int j = 0;
int k = 0;
int l = 0;
size_t skip = item_size - 1;
for (i = 0; i < ninput_items; ++i)
{
k = j + skip;
l = j;
while (k >= l)
{
out[j++] = in[k--];
}
}
}
unpack_2bit_samples_sptr make_unpack_2bit_samples(bool big_endian_bytes,
size_t item_size,
bool big_endian_items,
bool reverse_interleaving)
{
return unpack_2bit_samples_sptr(
new unpack_2bit_samples(big_endian_bytes,
item_size,
big_endian_items,
reverse_interleaving));
}
unpack_2bit_samples::unpack_2bit_samples(bool big_endian_bytes,
size_t item_size,
bool big_endian_items,
bool reverse_interleaving)
: sync_interpolator("unpack_2bit_samples",
gr::io_signature::make(1, 1, item_size),
gr::io_signature::make(1, 1, sizeof(char)),
4 * item_size), // we make 4 bytes out for every byte in
big_endian_bytes_(big_endian_bytes),
item_size_(item_size),
big_endian_items_(big_endian_items),
swap_endian_items_(false),
reverse_interleaving_(reverse_interleaving)
{
bool big_endian_system = systemIsBigEndian();
// Only swap the item bytes if the item size > 1 byte and the system
// endianness is not the same as the item endianness:
swap_endian_items_ = (item_size_ > 1) &&
(big_endian_system != big_endian_items);
bool big_endian_bytes_system = systemBytesAreBigEndian();
swap_endian_bytes_ = (big_endian_bytes_system != big_endian_bytes_);
}
int unpack_2bit_samples::work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
auto const *in = reinterpret_cast<signed char const *>(input_items[0]);
auto *out = reinterpret_cast<int8_t *>(output_items[0]);
size_t ninput_bytes = noutput_items / 4;
size_t ninput_items = ninput_bytes / item_size_;
// Handle endian swap if needed
if (swap_endian_items_)
{
work_buffer_.reserve(ninput_bytes);
swapEndianness(in, work_buffer_, item_size_, ninput_items);
in = const_cast<signed char const *>(&work_buffer_[0]);
}
// Here the in pointer can be interpreted as a stream of bytes to be
// converted. But we now have two possibilities:
// 1) The samples in a byte are in big endian order
// 2) The samples in a byte are in little endian order
byte_and_samples raw_byte{};
int n = 0;
if (!reverse_interleaving_)
{
if (swap_endian_bytes_)
{
for (size_t i = 0; i < ninput_bytes; ++i)
{
// Read packed input sample (1 byte = 4 samples)
raw_byte.byte = in[i];
out[n++] = static_cast<int8_t>(2 * raw_byte.samples.sample_3 + 1);
out[n++] = static_cast<int8_t>(2 * raw_byte.samples.sample_2 + 1);
out[n++] = static_cast<int8_t>(2 * raw_byte.samples.sample_1 + 1);
out[n++] = static_cast<int8_t>(2 * raw_byte.samples.sample_0 + 1);
}
}
else
{
for (size_t i = 0; i < ninput_bytes; ++i)
{
// Read packed input sample (1 byte = 4 samples)
raw_byte.byte = in[i];
out[n++] = static_cast<int8_t>(2 * raw_byte.samples.sample_0 + 1);
out[n++] = static_cast<int8_t>(2 * raw_byte.samples.sample_1 + 1);
out[n++] = static_cast<int8_t>(2 * raw_byte.samples.sample_2 + 1);
out[n++] = static_cast<int8_t>(2 * raw_byte.samples.sample_3 + 1);
}
}
}
else
{
if (swap_endian_bytes_)
{
for (size_t i = 0; i < ninput_bytes; ++i)
{
// Read packed input sample (1 byte = 4 samples)
raw_byte.byte = in[i];
out[n++] = static_cast<int8_t>(2 * raw_byte.samples.sample_2 + 1);
out[n++] = static_cast<int8_t>(2 * raw_byte.samples.sample_3 + 1);
out[n++] = static_cast<int8_t>(2 * raw_byte.samples.sample_0 + 1);
out[n++] = static_cast<int8_t>(2 * raw_byte.samples.sample_1 + 1);
}
}
else
{
for (size_t i = 0; i < ninput_bytes; ++i)
{
// Read packed input sample (1 byte = 4 samples)
raw_byte.byte = in[i];
out[n++] = static_cast<int8_t>(2 * raw_byte.samples.sample_1 + 1);
out[n++] = static_cast<int8_t>(2 * raw_byte.samples.sample_0 + 1);
out[n++] = static_cast<int8_t>(2 * raw_byte.samples.sample_3 + 1);
out[n++] = static_cast<int8_t>(2 * raw_byte.samples.sample_2 + 1);
}
}
}
return noutput_items;
}