mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2024-12-15 20:50:33 +00:00
192 lines
7.2 KiB
C++
192 lines
7.2 KiB
C++
/*!
|
|
* \file beidou_b1i_signal_processing.cc
|
|
* \brief This class implements various functions for BeiDou B1I signal
|
|
* \author Sergi Segura, 2018. sergi.segura.munoz(at)gmail.com
|
|
*
|
|
* Detailed description of the file here if needed.
|
|
*
|
|
* -------------------------------------------------------------------------
|
|
*
|
|
* Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors)
|
|
*
|
|
* GNSS-SDR is a software defined Global Navigation
|
|
* Satellite Systems receiver
|
|
*
|
|
* This file is part of GNSS-SDR.
|
|
*
|
|
* GNSS-SDR is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* GNSS-SDR is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* -------------------------------------------------------------------------
|
|
*/
|
|
|
|
#include "beidou_b1i_signal_processing.h"
|
|
|
|
auto auxCeil = [](float x) { return static_cast<int32_t>(static_cast<int64_t>((x) + 1)); };
|
|
|
|
void beidou_b1i_code_gen_int(int32_t* _dest, int32_t _prn, uint32_t _chip_shift)
|
|
{
|
|
const uint32_t _code_length = 2046;
|
|
bool G1[_code_length];
|
|
bool G2[_code_length];
|
|
bool G1_register[11] = {false, true, false, true, false, true, false, true, false, true, false};
|
|
bool G2_register[11] = {false, true, false, true, false, true, false, true, false, true, false};
|
|
bool feedback1, feedback2;
|
|
bool aux;
|
|
uint32_t lcv, lcv2;
|
|
uint32_t delay;
|
|
int32_t prn_idx;
|
|
/* G2 Delays as defined in GPS-ISD-200D */
|
|
const int32_t delays[33] = {712 /*PRN1*/, 1581, 1414, 1550, 581, 771, 1311, 1043, 1549, 359, 710, 1579, 1548, 1103, 579, 769, 358, 709, 1411, 1547,
|
|
1102, 578, 357, 1577, 1410, 1546, 1101, 707, 1576, 1409, 1545, 354 /*PRN32*/,
|
|
705};
|
|
const int32_t phase1[37] = {1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 8, 8, 8, 9, 9, 10};
|
|
const int32_t phase2[37] = {3, 4, 5, 6, 8, 9, 10, 11, 7, 4, 5, 6, 8, 9, 10, 11, 5, 6, 8, 9, 10, 11, 6, 8, 9, 10, 11, 8, 9, 10, 11, 9, 10, 11, 10, 11, 11};
|
|
|
|
// compute delay array index for given PRN number
|
|
prn_idx = _prn - 1;
|
|
|
|
/* A simple error check */
|
|
if ((prn_idx < 0) || (prn_idx > 32))
|
|
{
|
|
return;
|
|
}
|
|
|
|
/*for (lcv = 0; lcv < 11; lcv++)
|
|
{
|
|
G1_register[lcv] = 1;
|
|
G2_register[lcv] = 1;
|
|
}*/
|
|
|
|
/* Generate G1 & G2 Register */
|
|
for (lcv = 0; lcv < _code_length; lcv++)
|
|
{
|
|
G1[lcv] = G1_register[0];
|
|
G2[lcv] = G2_register[-(phase1[prn_idx] - 11)] ^ G2_register[-(phase2[prn_idx] - 11)];
|
|
|
|
feedback1 = (G1_register[0] + G1_register[1] + G1_register[2] + G1_register[3] + G1_register[4] + G1_register[10]) & 0x1;
|
|
feedback2 = (G2_register[0] + G2_register[2] + G2_register[3] + G2_register[6] + G2_register[7] + G2_register[8] + G2_register[9] + G2_register[10]) & 0x1;
|
|
|
|
for (lcv2 = 0; lcv2 < 10; lcv2++)
|
|
{
|
|
G1_register[lcv2] = G1_register[lcv2 + 1];
|
|
G2_register[lcv2] = G2_register[lcv2 + 1];
|
|
}
|
|
|
|
G1_register[10] = feedback1;
|
|
G2_register[10] = feedback2;
|
|
}
|
|
|
|
/* Set the delay */
|
|
delay = _code_length - delays[prn_idx] * 0; //**********************************
|
|
delay += _chip_shift;
|
|
delay %= _code_length;
|
|
|
|
/* Generate PRN from G1 and G2 Registers */
|
|
for (lcv = 0; lcv < _code_length; lcv++)
|
|
{
|
|
aux = G1[(lcv + _chip_shift) % _code_length] ^ G2[delay];
|
|
if (aux == true)
|
|
{
|
|
_dest[lcv] = 1;
|
|
}
|
|
else
|
|
{
|
|
_dest[lcv] = -1;
|
|
}
|
|
|
|
delay++;
|
|
//std::cout << _dest[lcv] << " ";
|
|
delay %= _code_length;
|
|
}
|
|
}
|
|
|
|
|
|
void beidou_b1i_code_gen_float(float* _dest, int32_t _prn, uint32_t _chip_shift)
|
|
{
|
|
uint32_t _code_length = 2046;
|
|
int32_t b1i_code_int[_code_length];
|
|
|
|
beidou_b1i_code_gen_int(b1i_code_int, _prn, _chip_shift);
|
|
|
|
for (uint32_t ii = 0; ii < _code_length; ++ii)
|
|
{
|
|
_dest[ii] = static_cast<float>(b1i_code_int[ii]);
|
|
}
|
|
}
|
|
|
|
|
|
void beidou_b1i_code_gen_complex(std::complex<float>* _dest, int32_t _prn, uint32_t _chip_shift)
|
|
{
|
|
uint32_t _code_length = 2046;
|
|
int32_t b1i_code_int[_code_length];
|
|
|
|
beidou_b1i_code_gen_int(b1i_code_int, _prn, _chip_shift);
|
|
|
|
for (uint32_t ii = 0; ii < _code_length; ++ii)
|
|
{
|
|
_dest[ii] = std::complex<float>(static_cast<float>(b1i_code_int[ii]), 0.0f);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Generates complex GPS L1 C/A code for the desired SV ID and sampled to specific sampling frequency
|
|
*/
|
|
void beidou_b1i_code_gen_complex_sampled(std::complex<float>* _dest, uint32_t _prn, int32_t _fs, uint32_t _chip_shift)
|
|
{
|
|
// This function is based on the GNU software GPS for MATLAB in the Kay Borre book
|
|
std::complex<float> _code[2046];
|
|
int32_t _samplesPerCode, _codeValueIndex;
|
|
float _ts;
|
|
float _tc;
|
|
float aux;
|
|
const int32_t _codeFreqBasis = 2046000; //Hz
|
|
const int32_t _codeLength = 2046;
|
|
|
|
//--- Find number of samples per spreading code ----------------------------
|
|
_samplesPerCode = static_cast<int32_t>(static_cast<double>(_fs) / static_cast<double>(_codeFreqBasis / _codeLength));
|
|
|
|
//--- Find time constants --------------------------------------------------
|
|
_ts = 1.0 / static_cast<float>(_fs); // Sampling period in sec
|
|
_tc = 1.0 / static_cast<float>(_codeFreqBasis); // C/A chip period in sec
|
|
beidou_b1i_code_gen_complex(_code, _prn, _chip_shift); //generate C/A code 1 sample per chip
|
|
|
|
for (int32_t i = 0; i < _samplesPerCode; i++)
|
|
{
|
|
//=== Digitizing =======================================================
|
|
|
|
//--- Make index array to read C/A code values -------------------------
|
|
// The length of the index array depends on the sampling frequency -
|
|
// number of samples per millisecond (because one C/A code period is one
|
|
// millisecond).
|
|
|
|
// _codeValueIndex = ceil((_ts * ((float)i + 1)) / _tc) - 1;
|
|
aux = (_ts * (i + 1)) / _tc;
|
|
_codeValueIndex = auxCeil(aux) - 1;
|
|
|
|
//--- Make the digitized version of the C/A code -----------------------
|
|
// The "upsampled" code is made by selecting values form the CA code
|
|
// chip array (caCode) for the time instances of each sample.
|
|
if (i == _samplesPerCode - 1)
|
|
{
|
|
//--- Correct the last index (due to number rounding issues) -----------
|
|
_dest[i] = _code[_codeLength - 1];
|
|
}
|
|
else
|
|
{
|
|
_dest[i] = _code[_codeValueIndex]; //repeat the chip -> upsample
|
|
}
|
|
}
|
|
}
|