gnss-sdr/src/algorithms/libs/opencl/fft_execute.cc

405 lines
14 KiB
C++

/*!
* \file fft_execute.cc
*
* Version: <1.0>
*
* Copyright ( C ) 2008 Apple Inc. All Rights Reserved.
* SPDX-License-Identifier: LicenseRef-Apple-Permissive
*
*/
#include "clFFT.h"
#include "fft_internal.h"
#include <cmath>
#include <cstdio>
#include <cstdlib>
#define max(a, b) (((a) > (b)) ? (a) : (b))
#define min(a, b) (((a) < (b)) ? (a) : (b))
static cl_int
allocateTemporaryBufferInterleaved(cl_fft_plan *plan, cl_uint batchSize)
{
cl_int err = CL_SUCCESS;
if (plan->temp_buffer_needed && plan->last_batch_size != batchSize)
{
plan->last_batch_size = batchSize;
size_t tmpLength = plan->n.x * plan->n.y * plan->n.z * batchSize * 2 * sizeof(cl_float);
if (plan->tempmemobj)
{
clReleaseMemObject(plan->tempmemobj);
}
plan->tempmemobj = clCreateBuffer(plan->context, CL_MEM_READ_WRITE, tmpLength, nullptr, &err);
}
return err;
}
static cl_int
allocateTemporaryBufferPlannar(cl_fft_plan *plan, cl_uint batchSize)
{
cl_int err = CL_SUCCESS;
cl_int terr;
if (plan->temp_buffer_needed && plan->last_batch_size != batchSize)
{
plan->last_batch_size = batchSize;
size_t tmpLength = plan->n.x * plan->n.y * plan->n.z * batchSize * sizeof(cl_float);
if (plan->tempmemobj_real)
{
clReleaseMemObject(plan->tempmemobj_real);
}
if (plan->tempmemobj_imag)
{
clReleaseMemObject(plan->tempmemobj_imag);
}
plan->tempmemobj_real = clCreateBuffer(plan->context, CL_MEM_READ_WRITE, tmpLength, nullptr, &err);
plan->tempmemobj_imag = clCreateBuffer(plan->context, CL_MEM_READ_WRITE, tmpLength, nullptr, &terr);
err |= terr;
}
return err;
}
void getKernelWorkDimensions(cl_fft_plan *plan, cl_fft_kernel_info *kernelInfo, cl_int *batchSize, size_t *gWorkItems, size_t *lWorkItems)
{
*lWorkItems = kernelInfo->num_workitems_per_workgroup;
int numWorkGroups = kernelInfo->num_workgroups;
int numXFormsPerWG = kernelInfo->num_xforms_per_workgroup;
switch (kernelInfo->dir)
{
case cl_fft_kernel_x:
*batchSize *= (plan->n.y * plan->n.z);
numWorkGroups = (*batchSize % numXFormsPerWG) ? (*batchSize / numXFormsPerWG + 1) : (*batchSize / numXFormsPerWG);
numWorkGroups *= kernelInfo->num_workgroups;
break;
case cl_fft_kernel_y:
*batchSize *= plan->n.z;
numWorkGroups *= *batchSize;
break;
case cl_fft_kernel_z:
numWorkGroups *= *batchSize;
break;
}
*gWorkItems = numWorkGroups * *lWorkItems;
}
cl_int
clFFT_ExecuteInterleaved(cl_command_queue queue, clFFT_Plan Plan, cl_int batchSize, clFFT_Direction dir,
cl_mem data_in, cl_mem data_out,
cl_int num_events, cl_event *event_list, cl_event *event)
{
int s;
auto *plan = (cl_fft_plan *)Plan;
if (plan->format != clFFT_InterleavedComplexFormat)
{
return CL_INVALID_VALUE;
}
cl_int err;
size_t gWorkItems;
size_t lWorkItems;
int inPlaceDone;
cl_int isInPlace = data_in == data_out ? 1 : 0;
if ((err = allocateTemporaryBufferInterleaved(plan, batchSize)) != CL_SUCCESS)
{
return err;
}
cl_mem memObj[3];
memObj[0] = data_in;
memObj[1] = data_out;
memObj[2] = plan->tempmemobj;
cl_fft_kernel_info *kernelInfo = plan->kernel_info;
int numKernels = plan->num_kernels;
int numKernelsOdd = numKernels & 1;
int currRead = 0;
int currWrite = 1;
// at least one external dram shuffle (transpose) required
if (plan->temp_buffer_needed)
{
// in-place transform
if (isInPlace)
{
inPlaceDone = 0;
currRead = 1;
currWrite = 2;
}
else
{
currWrite = (numKernels & 1) ? 1 : 2;
}
while (kernelInfo)
{
if (isInPlace && numKernelsOdd && !inPlaceDone && kernelInfo->in_place_possible)
{
currWrite = currRead;
inPlaceDone = 1;
}
s = batchSize;
getKernelWorkDimensions(plan, kernelInfo, &s, &gWorkItems, &lWorkItems);
err |= clSetKernelArg(kernelInfo->kernel, 0, sizeof(cl_mem), &memObj[currRead]);
err |= clSetKernelArg(kernelInfo->kernel, 1, sizeof(cl_mem), &memObj[currWrite]);
err |= clSetKernelArg(kernelInfo->kernel, 2, sizeof(cl_int), &dir);
err |= clSetKernelArg(kernelInfo->kernel, 3, sizeof(cl_int), &s);
err |= clEnqueueNDRangeKernel(queue, kernelInfo->kernel, 1, nullptr, &gWorkItems, &lWorkItems, 0, nullptr, nullptr);
if (err)
{
return err;
}
currRead = (currWrite == 1) ? 1 : 2;
currWrite = (currWrite == 1) ? 2 : 1;
kernelInfo = kernelInfo->next;
}
}
// no dram shuffle (transpose required) transform
// all kernels can execute in-place.
else
{
while (kernelInfo)
{
s = batchSize;
getKernelWorkDimensions(plan, kernelInfo, &s, &gWorkItems, &lWorkItems);
err |= clSetKernelArg(kernelInfo->kernel, 0, sizeof(cl_mem), &memObj[currRead]);
err |= clSetKernelArg(kernelInfo->kernel, 1, sizeof(cl_mem), &memObj[currWrite]);
err |= clSetKernelArg(kernelInfo->kernel, 2, sizeof(cl_int), &dir);
err |= clSetKernelArg(kernelInfo->kernel, 3, sizeof(cl_int), &s);
err |= clEnqueueNDRangeKernel(queue, kernelInfo->kernel, 1, nullptr, &gWorkItems, &lWorkItems, 0, nullptr, nullptr);
if (err)
{
return err;
}
currRead = 1;
currWrite = 1;
kernelInfo = kernelInfo->next;
}
}
return err;
}
cl_int
clFFT_ExecutePlannar(cl_command_queue queue, clFFT_Plan Plan, cl_int batchSize, clFFT_Direction dir,
cl_mem data_in_real, cl_mem data_in_imag, cl_mem data_out_real, cl_mem data_out_imag,
cl_int num_events, cl_event *event_list, cl_event *event)
{
int s;
auto *plan = (cl_fft_plan *)Plan;
if (plan->format != clFFT_SplitComplexFormat)
{
return CL_INVALID_VALUE;
}
cl_int err;
size_t gWorkItems;
size_t lWorkItems;
int inPlaceDone;
cl_int isInPlace = ((data_in_real == data_out_real) && (data_in_imag == data_out_imag)) ? 1 : 0;
if ((err = allocateTemporaryBufferPlannar(plan, batchSize)) != CL_SUCCESS)
{
return err;
}
cl_mem memObj_real[3];
cl_mem memObj_imag[3];
memObj_real[0] = data_in_real;
memObj_real[1] = data_out_real;
memObj_real[2] = plan->tempmemobj_real;
memObj_imag[0] = data_in_imag;
memObj_imag[1] = data_out_imag;
memObj_imag[2] = plan->tempmemobj_imag;
cl_fft_kernel_info *kernelInfo = plan->kernel_info;
int numKernels = plan->num_kernels;
int numKernelsOdd = numKernels & 1;
int currRead = 0;
int currWrite = 1;
// at least one external dram shuffle (transpose) required
if (plan->temp_buffer_needed)
{
// in-place transform
if (isInPlace)
{
inPlaceDone = 0;
currRead = 1;
currWrite = 2;
}
else
{
currWrite = (numKernels & 1) ? 1 : 2;
}
while (kernelInfo)
{
if (isInPlace && numKernelsOdd && !inPlaceDone && kernelInfo->in_place_possible)
{
currWrite = currRead;
inPlaceDone = 1;
}
s = batchSize;
getKernelWorkDimensions(plan, kernelInfo, &s, &gWorkItems, &lWorkItems);
err |= clSetKernelArg(kernelInfo->kernel, 0, sizeof(cl_mem), &memObj_real[currRead]);
err |= clSetKernelArg(kernelInfo->kernel, 1, sizeof(cl_mem), &memObj_imag[currRead]);
err |= clSetKernelArg(kernelInfo->kernel, 2, sizeof(cl_mem), &memObj_real[currWrite]);
err |= clSetKernelArg(kernelInfo->kernel, 3, sizeof(cl_mem), &memObj_imag[currWrite]);
err |= clSetKernelArg(kernelInfo->kernel, 4, sizeof(cl_int), &dir);
err |= clSetKernelArg(kernelInfo->kernel, 5, sizeof(cl_int), &s);
err |= clEnqueueNDRangeKernel(queue, kernelInfo->kernel, 1, nullptr, &gWorkItems, &lWorkItems, 0, nullptr, nullptr);
if (err)
{
return err;
}
currRead = (currWrite == 1) ? 1 : 2;
currWrite = (currWrite == 1) ? 2 : 1;
kernelInfo = kernelInfo->next;
}
}
// no dram shuffle (transpose required) transform
else
{
while (kernelInfo)
{
s = batchSize;
getKernelWorkDimensions(plan, kernelInfo, &s, &gWorkItems, &lWorkItems);
err |= clSetKernelArg(kernelInfo->kernel, 0, sizeof(cl_mem), &memObj_real[currRead]);
err |= clSetKernelArg(kernelInfo->kernel, 1, sizeof(cl_mem), &memObj_imag[currRead]);
err |= clSetKernelArg(kernelInfo->kernel, 2, sizeof(cl_mem), &memObj_real[currWrite]);
err |= clSetKernelArg(kernelInfo->kernel, 3, sizeof(cl_mem), &memObj_imag[currWrite]);
err |= clSetKernelArg(kernelInfo->kernel, 4, sizeof(cl_int), &dir);
err |= clSetKernelArg(kernelInfo->kernel, 5, sizeof(cl_int), &s);
err |= clEnqueueNDRangeKernel(queue, kernelInfo->kernel, 1, nullptr, &gWorkItems, &lWorkItems, 0, nullptr, nullptr);
if (err)
{
return err;
}
currRead = 1;
currWrite = 1;
kernelInfo = kernelInfo->next;
}
}
return err;
}
cl_int
clFFT_1DTwistInterleaved(clFFT_Plan Plan, cl_command_queue queue, cl_mem array,
unsigned numRows, unsigned numCols, unsigned startRow, unsigned rowsToProcess, clFFT_Direction dir)
{
auto *plan = (cl_fft_plan *)Plan;
unsigned int N = numRows * numCols;
unsigned int nCols = numCols;
unsigned int sRow = startRow;
unsigned int rToProcess = rowsToProcess;
int d = dir;
int err = 0;
cl_device_id device_id;
err = clGetCommandQueueInfo(queue, CL_QUEUE_DEVICE, sizeof(cl_device_id), &device_id, nullptr);
if (err)
{
return err;
}
size_t gSize;
err = clGetKernelWorkGroupInfo(plan->twist_kernel, device_id, CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &gSize, nullptr);
if (err)
{
return err;
}
gSize = min(128, gSize);
size_t numGlobalThreads[1] = {max(numCols / gSize, 1) * gSize};
size_t numLocalThreads[1] = {gSize};
err |= clSetKernelArg(plan->twist_kernel, 0, sizeof(cl_mem), &array);
err |= clSetKernelArg(plan->twist_kernel, 1, sizeof(unsigned int), &sRow);
err |= clSetKernelArg(plan->twist_kernel, 2, sizeof(unsigned int), &nCols);
err |= clSetKernelArg(plan->twist_kernel, 3, sizeof(unsigned int), &N);
err |= clSetKernelArg(plan->twist_kernel, 4, sizeof(unsigned int), &rToProcess);
err |= clSetKernelArg(plan->twist_kernel, 5, sizeof(int), &d);
err |= clEnqueueNDRangeKernel(queue, plan->twist_kernel, 1, nullptr, numGlobalThreads, numLocalThreads, 0, nullptr, nullptr);
return err;
}
cl_int
clFFT_1DTwistPlannar(clFFT_Plan Plan, cl_command_queue queue, cl_mem array_real, cl_mem array_imag,
unsigned numRows, unsigned numCols, unsigned startRow, unsigned rowsToProcess, clFFT_Direction dir)
{
auto *plan = (cl_fft_plan *)Plan;
unsigned int N = numRows * numCols;
unsigned int nCols = numCols;
unsigned int sRow = startRow;
unsigned int rToProcess = rowsToProcess;
int d = dir;
int err = 0;
cl_device_id device_id;
err = clGetCommandQueueInfo(queue, CL_QUEUE_DEVICE, sizeof(cl_device_id), &device_id, nullptr);
if (err)
{
return err;
}
size_t gSize;
err = clGetKernelWorkGroupInfo(plan->twist_kernel, device_id, CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &gSize, nullptr);
if (err)
{
return err;
}
gSize = min(128, gSize);
size_t numGlobalThreads[1] = {max(numCols / gSize, 1) * gSize};
size_t numLocalThreads[1] = {gSize};
err |= clSetKernelArg(plan->twist_kernel, 0, sizeof(cl_mem), &array_real);
err |= clSetKernelArg(plan->twist_kernel, 1, sizeof(cl_mem), &array_imag);
err |= clSetKernelArg(plan->twist_kernel, 2, sizeof(unsigned int), &sRow);
err |= clSetKernelArg(plan->twist_kernel, 3, sizeof(unsigned int), &nCols);
err |= clSetKernelArg(plan->twist_kernel, 4, sizeof(unsigned int), &N);
err |= clSetKernelArg(plan->twist_kernel, 5, sizeof(unsigned int), &rToProcess);
err |= clSetKernelArg(plan->twist_kernel, 6, sizeof(int), &d);
err |= clEnqueueNDRangeKernel(queue, plan->twist_kernel, 1, nullptr, numGlobalThreads, numLocalThreads, 0, nullptr, nullptr);
return err;
}