gnss-sdr/src/tests/unit-tests/signal-processing-blocks/pvt/rtcm_test.cc

631 lines
22 KiB
C++

/*!
* \file rtcm_test.cc
* \brief This file implements unit tests for the Rtcm class.
* \author Carles Fernandez-Prades, 2015. cfernandez(at)cttc.es
*
*
* -----------------------------------------------------------------------------
*
* GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
* This file is part of GNSS-SDR.
*
* Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors)
* SPDX-License-Identifier: GPL-3.0-or-later
*
* -----------------------------------------------------------------------------
*/
#include "Galileo_INAV.h"
#include "rtcm.h"
#include <memory>
#include <thread>
TEST(RtcmTest, HexToBin)
{
auto rtcm = std::make_shared<Rtcm>();
std::string test1 = "2A";
std::string test1_bin = rtcm->hex_to_bin(test1);
EXPECT_EQ(0, test1_bin.compare("00101010"));
std::string test2 = "FF";
std::string test2_bin = rtcm->hex_to_bin(test2);
EXPECT_EQ(0, test2_bin.compare("11111111"));
std::string test3 = "ff";
std::string test3_bin = rtcm->hex_to_bin(test3);
EXPECT_EQ(0, test3_bin.compare("11111111"));
std::string test4 = "100";
std::string test4_bin = rtcm->hex_to_bin(test4);
EXPECT_EQ(0, test4_bin.compare("000100000000"));
std::string test5 = "1101";
std::string test5_bin = rtcm->hex_to_bin(test5);
EXPECT_EQ(0, test5_bin.compare("0001000100000001"));
std::string test6 = "3";
std::string test6_bin = rtcm->hex_to_bin(test6);
EXPECT_EQ(0, test6_bin.compare("0011"));
}
TEST(RtcmTest, BinToHex)
{
auto rtcm = std::make_shared<Rtcm>();
std::string test1 = "00101010";
std::string test1_hex = rtcm->bin_to_hex(test1);
EXPECT_EQ(0, test1_hex.compare("2A"));
std::string test2 = "11111111";
std::string test2_hex = rtcm->bin_to_hex(test2);
EXPECT_EQ(0, test2_hex.compare("FF"));
std::string test4 = "000100000000";
std::string test4_hex = rtcm->bin_to_hex(test4);
EXPECT_EQ(0, test4_hex.compare("100"));
std::string test5 = "0001000100000001";
std::string test5_hex = rtcm->bin_to_hex(test5);
EXPECT_EQ(0, test5_hex.compare("1101"));
std::string test6 = "0011";
std::string test6_hex = rtcm->bin_to_hex(test6);
EXPECT_EQ(0, test6_hex.compare("3"));
std::string test7 = "11";
std::string test7_hex = rtcm->bin_to_hex(test7);
EXPECT_EQ(0, test7_hex.compare("3"));
std::string test8 = "1000100000001";
std::string test8_hex = rtcm->bin_to_hex(test8);
EXPECT_EQ(0, test8_hex.compare("1101"));
}
TEST(RtcmTest, HexToInt)
{
auto rtcm = std::make_shared<Rtcm>();
std::string test1 = "2A";
int64_t test1_int = rtcm->hex_to_int(test1);
int64_t expected1 = 42;
EXPECT_EQ(expected1, test1_int);
}
TEST(RtcmTest, HexToUint)
{
auto rtcm = std::make_shared<Rtcm>();
uint64_t expected1 = 42;
EXPECT_EQ(expected1, rtcm->hex_to_uint(rtcm->bin_to_hex("00101010")));
}
TEST(RtcmTest, BinToDouble)
{
auto rtcm = std::make_shared<Rtcm>();
std::bitset<4> test1(5);
int64_t test1_int = static_cast<int64_t>(rtcm->bin_to_double(test1.to_string()));
int64_t expected1 = 5;
EXPECT_EQ(expected1, test1_int);
std::bitset<4> test2(-5);
EXPECT_DOUBLE_EQ(-5, rtcm->bin_to_double(test2.to_string()));
std::bitset<65> test3(-5);
EXPECT_DOUBLE_EQ(0, rtcm->bin_to_double(test3.to_string()));
}
TEST(RtcmTest, BinToUint)
{
auto rtcm = std::make_shared<Rtcm>();
uint32_t expected1 = 42;
EXPECT_EQ(expected1, rtcm->bin_to_uint("00101010"));
uint32_t expected2 = 214;
EXPECT_EQ(expected2, rtcm->bin_to_uint("11010110"));
}
TEST(RtcmTest, BinToInt)
{
auto rtcm = std::make_shared<Rtcm>();
int32_t expected1 = 42;
EXPECT_EQ(expected1, rtcm->bin_to_int("00101010"));
int32_t expected2 = -42;
EXPECT_EQ(expected2, rtcm->bin_to_int("11010110"));
}
TEST(RtcmTest, BinToBinaryData)
{
auto rtcm = std::make_shared<Rtcm>();
std::string bin_str("1101101011010110");
std::string data_str = rtcm->bin_to_binary_data(bin_str);
std::string test_binary = data_str.substr(0, 1);
std::string test_bin = rtcm->binary_data_to_bin(test_binary);
std::string test_hex = rtcm->bin_to_hex(test_bin);
EXPECT_EQ(0, test_hex.compare("DA"));
std::string recovered_str = rtcm->binary_data_to_bin(data_str);
EXPECT_EQ(0, recovered_str.compare(bin_str));
}
TEST(RtcmTest, CheckCRC)
{
auto rtcm = std::make_shared<Rtcm>();
bool expected_true = true;
bool expected_false = false;
std::string good_crc = rtcm->bin_to_binary_data(rtcm->hex_to_bin("D300133ED7D30202980EDEEF34B4BD62AC0941986F33360B98"));
std::string bad_crc = rtcm->bin_to_binary_data(rtcm->hex_to_bin("D300133ED7D30202980EDEEF34B4BD62AC0941986F33360B99"));
EXPECT_EQ(expected_true, rtcm->check_CRC(good_crc));
EXPECT_EQ(expected_false, rtcm->check_CRC(bad_crc));
EXPECT_EQ(expected_true, rtcm->check_CRC(rtcm->print_MT1005_test()));
EXPECT_EQ(expected_true, rtcm->check_CRC(rtcm->print_MT1005_test())); // Run twice to check that CRC has no memory
}
TEST(RtcmTest, MT1001)
{
auto rtcm = std::make_shared<Rtcm>();
Gps_Ephemeris gps_eph = Gps_Ephemeris();
Gnss_Synchro gnss_synchro;
gnss_synchro.PRN = 2;
std::string sys = "G";
bool expected_true = true;
unsigned short station_id = 1234;
std::string sig = "1C";
gnss_synchro.System = *sys.c_str();
std::memcpy(static_cast<void*>(gnss_synchro.Signal), sig.c_str(), 3);
gnss_synchro.Pseudorange_m = 20000000.0;
double obs_time = 25.0;
std::map<int, Gnss_Synchro> pseudoranges;
pseudoranges.insert(std::pair<int, Gnss_Synchro>(1, gnss_synchro));
std::string MT1001 = rtcm->print_MT1001(gps_eph, obs_time, pseudoranges, station_id);
EXPECT_EQ(expected_true, rtcm->check_CRC(MT1001));
}
TEST(RtcmTest, MT1005)
{
auto rtcm = std::make_shared<Rtcm>();
std::string reference_msg = rtcm->print_MT1005_test();
std::string reference_msg2 = rtcm->print_MT1005(2003, 1114104.5999, -4850729.7108, 3975521.4643, true, false, false, false, false, 0);
EXPECT_EQ(0, reference_msg.compare(reference_msg2));
unsigned int ref_id;
double ecef_x;
double ecef_y;
double ecef_z;
bool gps;
bool glonass;
bool galileo;
bool expected_true = true;
bool expected_false = false;
rtcm->read_MT1005(reference_msg, ref_id, ecef_x, ecef_y, ecef_z, gps, glonass, galileo);
EXPECT_EQ(expected_true, gps);
EXPECT_EQ(expected_false, glonass);
EXPECT_EQ(expected_false, galileo);
EXPECT_EQ(static_cast<unsigned int>(2003), ref_id);
EXPECT_DOUBLE_EQ(1114104.5999, ecef_x);
EXPECT_DOUBLE_EQ(-4850729.7108, ecef_y);
EXPECT_DOUBLE_EQ(3975521.4643, ecef_z);
gps = false;
ecef_x = 0.0;
rtcm->read_MT1005(rtcm->bin_to_binary_data(rtcm->hex_to_bin("D300133ED7D30202980EDEEF34B4BD62AC0941986F33360B98")), ref_id, ecef_x, ecef_y, ecef_z, gps, glonass, galileo);
EXPECT_EQ(expected_true, gps);
EXPECT_EQ(expected_false, glonass);
EXPECT_EQ(expected_false, galileo);
EXPECT_EQ(static_cast<unsigned int>(2003), ref_id);
EXPECT_DOUBLE_EQ(1114104.5999, ecef_x);
EXPECT_DOUBLE_EQ(-4850729.7108, ecef_y);
EXPECT_DOUBLE_EQ(3975521.4643, ecef_z);
}
TEST(RtcmTest, MT1019)
{
auto rtcm = std::make_shared<Rtcm>();
bool expected_true = true;
Gps_Ephemeris gps_eph = Gps_Ephemeris();
Gps_Ephemeris gps_eph_read = Gps_Ephemeris();
gps_eph.PRN = 3;
gps_eph.IODC = 4;
gps_eph.ecc = 2.0 * ECCENTRICITY_LSB;
gps_eph.fit_interval_flag = true;
std::string tx_msg = rtcm->print_MT1019(gps_eph);
EXPECT_EQ(0, rtcm->read_MT1019(tx_msg, gps_eph_read));
EXPECT_EQ(static_cast<unsigned int>(3), gps_eph_read.PRN);
EXPECT_DOUBLE_EQ(4, gps_eph_read.IODC);
EXPECT_DOUBLE_EQ(2.0 * ECCENTRICITY_LSB, gps_eph_read.ecc);
EXPECT_EQ(expected_true, gps_eph_read.fit_interval_flag);
EXPECT_EQ(1, rtcm->read_MT1019(rtcm->bin_to_binary_data(rtcm->hex_to_bin("FFFFFFFFFFF")), gps_eph_read));
}
TEST(RtcmTest, MT1020)
{
auto rtcm = std::make_shared<Rtcm>();
// Objects to populate the ephemeris and utc fields
Glonass_Gnav_Ephemeris gnav_ephemeris = Glonass_Gnav_Ephemeris();
Glonass_Gnav_Utc_Model gnav_utc_model = Glonass_Gnav_Utc_Model();
// Objects read, used for comparison
Glonass_Gnav_Ephemeris gnav_ephemeris_read = Glonass_Gnav_Ephemeris();
Glonass_Gnav_Utc_Model gnav_utc_model_read = Glonass_Gnav_Utc_Model();
// Perform data read and print of special values types
gnav_ephemeris.d_P_1 = 0.;
// Bit distribution per fields
gnav_ephemeris.d_t_k = 7560.;
// Glonass signed values
gnav_ephemeris.d_VXn = -0.490900039672852;
// Bit distribution per fields dependent on other factors
gnav_ephemeris.d_t_b = 8100.;
// Binary flag representation
gnav_ephemeris.d_P_3 = true;
std::string tx_msg = rtcm->print_MT1020(gnav_ephemeris, gnav_utc_model);
EXPECT_EQ(0, rtcm->read_MT1020(tx_msg, gnav_ephemeris_read, gnav_utc_model_read));
EXPECT_EQ(gnav_ephemeris.d_P_1, gnav_ephemeris_read.d_P_1);
EXPECT_TRUE(gnav_ephemeris.d_t_b - gnav_ephemeris_read.d_t_b < FLT_EPSILON);
EXPECT_TRUE(gnav_ephemeris.d_VXn - gnav_ephemeris_read.d_VXn < FLT_EPSILON);
EXPECT_TRUE(gnav_ephemeris.d_t_k - gnav_ephemeris.d_t_k < FLT_EPSILON);
EXPECT_EQ(gnav_ephemeris.d_P_3, gnav_ephemeris_read.d_P_3);
EXPECT_EQ(1, rtcm->read_MT1020(rtcm->bin_to_binary_data(rtcm->hex_to_bin("FFFFFFFFFFF")), gnav_ephemeris_read, gnav_utc_model_read));
}
TEST(RtcmTest, MT1029)
{
auto rtcm = std::make_shared<Rtcm>();
std::string s_test("UTF-8 проверка wörter");
unsigned int ref_id = 23;
double obs_time = 0;
Gps_Ephemeris gps_eph = Gps_Ephemeris();
std::string m1029 = rtcm->bin_to_hex(rtcm->binary_data_to_bin(rtcm->print_MT1029(ref_id, gps_eph, obs_time, s_test)));
std::string encoded_text = m1029.substr(24, 60);
std::string expected_encoded_text("5554462D3820D0BFD180D0BED0B2D0B5D180D0BAD0B02077C3B672746572");
EXPECT_EQ(0, expected_encoded_text.compare(encoded_text));
std::string characters_to_follow = m1029.substr(22, 2);
std::string expected_characters_to_follow("1E");
EXPECT_EQ(0, expected_characters_to_follow.compare(characters_to_follow));
}
TEST(RtcmTest, MT1045)
{
auto rtcm = std::make_shared<Rtcm>();
bool expected_true = true;
Galileo_Ephemeris gal_eph = Galileo_Ephemeris();
Galileo_Ephemeris gal_eph_read = Galileo_Ephemeris();
gal_eph.PRN = 5;
gal_eph.OMEGAdot = 53.0 * OMEGA_DOT_3_LSB;
gal_eph.E5a_DVS = true;
std::string tx_msg = rtcm->print_MT1045(gal_eph);
EXPECT_EQ(0, rtcm->read_MT1045(tx_msg, gal_eph_read));
EXPECT_EQ(expected_true, gal_eph_read.E5a_DVS);
EXPECT_DOUBLE_EQ(53.0 * OMEGA_DOT_3_LSB, gal_eph_read.OMEGAdot);
EXPECT_EQ(static_cast<unsigned int>(5), gal_eph_read.PRN);
EXPECT_EQ(1, rtcm->read_MT1045(rtcm->bin_to_binary_data(rtcm->hex_to_bin("FFFFFFFFFFF")), gal_eph_read));
}
TEST(RtcmTest, MSMCell)
{
auto rtcm = std::make_shared<Rtcm>();
Gps_Ephemeris gps_eph = Gps_Ephemeris();
Galileo_Ephemeris gal_eph = Galileo_Ephemeris();
// Glonass_Gnav_Ephemeris glo_gnav_eph = Glonass_Gnav_Ephemeris();
std::map<int, Gnss_Synchro> pseudoranges;
Gnss_Synchro gnss_synchro;
Gnss_Synchro gnss_synchro2;
Gnss_Synchro gnss_synchro3;
Gnss_Synchro gnss_synchro4;
Gnss_Synchro gnss_synchro5;
Gnss_Synchro gnss_synchro6;
gnss_synchro.PRN = 4;
gnss_synchro2.PRN = 8;
gnss_synchro3.PRN = 32;
gnss_synchro4.PRN = 10;
gnss_synchro5.PRN = 10;
gnss_synchro6.PRN = 10;
std::string gps = "G";
std::string gal = "E";
std::string glo = "R";
std::string c1 = "1C";
std::string s2 = "2S";
std::string x5 = "5X";
gnss_synchro.System = *gal.c_str();
gnss_synchro2.System = *gps.c_str();
gnss_synchro3.System = *gps.c_str();
gnss_synchro4.System = *gal.c_str();
gnss_synchro5.System = *gps.c_str();
gnss_synchro6.System = *glo.c_str();
std::memcpy(reinterpret_cast<void*>(gnss_synchro.Signal), x5.c_str(), 3);
std::memcpy(reinterpret_cast<void*>(gnss_synchro2.Signal), s2.c_str(), 3);
std::memcpy(reinterpret_cast<void*>(gnss_synchro3.Signal), c1.c_str(), 3);
std::memcpy(reinterpret_cast<void*>(gnss_synchro4.Signal), x5.c_str(), 3);
std::memcpy(reinterpret_cast<void*>(gnss_synchro5.Signal), c1.c_str(), 3);
std::memcpy(reinterpret_cast<void*>(gnss_synchro6.Signal), c1.c_str(), 3);
gnss_synchro.Pseudorange_m = 20000000.0;
gnss_synchro2.Pseudorange_m = 20001010.0;
gnss_synchro3.Pseudorange_m = 24002020.0;
gnss_synchro4.Pseudorange_m = 20003010.1;
gnss_synchro5.Pseudorange_m = 22003010.1;
gnss_synchro6.Pseudorange_m = 22003010.1;
pseudoranges.insert(std::pair<int, Gnss_Synchro>(1, gnss_synchro));
pseudoranges.insert(std::pair<int, Gnss_Synchro>(2, gnss_synchro2));
pseudoranges.insert(std::pair<int, Gnss_Synchro>(3, gnss_synchro3));
pseudoranges.insert(std::pair<int, Gnss_Synchro>(4, gnss_synchro4));
pseudoranges.insert(std::pair<int, Gnss_Synchro>(5, gnss_synchro5));
pseudoranges.insert(std::pair<int, Gnss_Synchro>(6, gnss_synchro5));
unsigned int ref_id = 1234;
unsigned int clock_steering_indicator = 0;
unsigned int external_clock_indicator = 0;
int smooth_int = 0;
bool divergence_free = false;
bool more_messages = false;
double obs_time = 25.0;
gps_eph.PRN = gnss_synchro2.PRN;
gal_eph.PRN = gnss_synchro.PRN;
// glo_gnav_eph.PRN = gnss_synchro.PRN;
std::string MSM1 = rtcm->print_MSM_1(gps_eph,
{},
gal_eph,
{},
obs_time,
pseudoranges,
ref_id,
clock_steering_indicator,
external_clock_indicator,
smooth_int,
divergence_free,
more_messages);
std::string MSM1_bin = rtcm->binary_data_to_bin(MSM1);
unsigned int Nsat = 4;
unsigned int Nsig = 3;
unsigned int size_header = 14;
unsigned int size_msg_length = 10;
EXPECT_EQ(0, MSM1_bin.substr(size_header + size_msg_length + 169, Nsat * Nsig).compare("001010101100")); // check cell mask
std::map<int, Gnss_Synchro> pseudoranges2;
pseudoranges2.insert(std::pair<int, Gnss_Synchro>(1, gnss_synchro6));
pseudoranges2.insert(std::pair<int, Gnss_Synchro>(1, gnss_synchro5));
pseudoranges2.insert(std::pair<int, Gnss_Synchro>(2, gnss_synchro4));
pseudoranges2.insert(std::pair<int, Gnss_Synchro>(3, gnss_synchro3));
pseudoranges2.insert(std::pair<int, Gnss_Synchro>(4, gnss_synchro2));
pseudoranges2.insert(std::pair<int, Gnss_Synchro>(5, gnss_synchro));
pseudoranges2.insert(std::pair<int, Gnss_Synchro>(6, gnss_synchro));
std::string MSM1_2 = rtcm->print_MSM_1(gps_eph,
{},
gal_eph,
{},
obs_time,
pseudoranges2,
ref_id,
clock_steering_indicator,
external_clock_indicator,
smooth_int,
divergence_free,
more_messages);
std::string MSM1_bin_2 = rtcm->binary_data_to_bin(MSM1_2);
EXPECT_EQ(0, MSM1_bin_2.substr(size_header + size_msg_length + 169, Nsat * Nsig).compare("001010001100")); // check cell mask
Gnss_Synchro gnss_synchro7;
gnss_synchro7.PRN = 10;
gnss_synchro7.System = *gps.c_str();
std::memcpy(reinterpret_cast<void*>(gnss_synchro7.Signal), s2.c_str(), 3);
gnss_synchro7.Pseudorange_m = 24000000.0;
std::map<int, Gnss_Synchro> pseudoranges3;
pseudoranges3.insert(std::pair<int, Gnss_Synchro>(1, gnss_synchro));
pseudoranges3.insert(std::pair<int, Gnss_Synchro>(2, gnss_synchro2));
pseudoranges3.insert(std::pair<int, Gnss_Synchro>(3, gnss_synchro7));
pseudoranges3.insert(std::pair<int, Gnss_Synchro>(4, gnss_synchro4));
pseudoranges3.insert(std::pair<int, Gnss_Synchro>(5, gnss_synchro5));
std::string MSM1_3 = rtcm->print_MSM_1(gps_eph,
{},
gal_eph,
{},
obs_time,
pseudoranges3,
ref_id,
clock_steering_indicator,
external_clock_indicator,
smooth_int,
divergence_free,
more_messages);
std::string MSM1_bin_3 = rtcm->binary_data_to_bin(MSM1_3);
EXPECT_EQ(0, MSM1_bin_3.substr(size_header + size_msg_length + 169, (Nsat - 1) * Nsig).compare("001010111")); // check cell mask
}
TEST(RtcmTest, MSM1)
{
auto rtcm = std::make_shared<Rtcm>();
bool expected_true = true;
Gps_Ephemeris gps_eph = Gps_Ephemeris();
std::map<int, Gnss_Synchro> pseudoranges;
Gnss_Synchro gnss_synchro;
Gnss_Synchro gnss_synchro2;
Gnss_Synchro gnss_synchro3;
Gnss_Synchro gnss_synchro4;
gnss_synchro.PRN = 2;
gnss_synchro2.PRN = 4;
gnss_synchro3.PRN = 32;
gnss_synchro4.PRN = 4;
std::string sys = "G";
std::string sig = "1C";
std::string sig2 = "2S";
gnss_synchro.System = *sys.c_str();
gnss_synchro2.System = *sys.c_str();
gnss_synchro3.System = *sys.c_str();
gnss_synchro4.System = *sys.c_str();
std::memcpy(static_cast<void*>(gnss_synchro.Signal), sig.c_str(), 3);
std::memcpy(static_cast<void*>(gnss_synchro2.Signal), sig.c_str(), 3);
std::memcpy(static_cast<void*>(gnss_synchro3.Signal), sig2.c_str(), 3);
std::memcpy(static_cast<void*>(gnss_synchro4.Signal), sig2.c_str(), 3);
gnss_synchro.Pseudorange_m = 20000000.0;
gnss_synchro2.Pseudorange_m = 20001010.0;
gnss_synchro3.Pseudorange_m = 24002020.0;
gnss_synchro4.Pseudorange_m = 20003010.1;
pseudoranges.insert(std::pair<int, Gnss_Synchro>(1, gnss_synchro));
pseudoranges.insert(std::pair<int, Gnss_Synchro>(2, gnss_synchro2));
pseudoranges.insert(std::pair<int, Gnss_Synchro>(3, gnss_synchro3));
pseudoranges.insert(std::pair<int, Gnss_Synchro>(4, gnss_synchro4));
unsigned short ref_id = 1234;
unsigned int clock_steering_indicator = 0;
unsigned int external_clock_indicator = 0;
int smooth_int = 0;
bool divergence_free = false;
bool more_messages = false;
double obs_time = 25.0;
gps_eph.PRN = gnss_synchro.PRN;
std::string MSM1 = rtcm->print_MSM_1(gps_eph,
{}, {}, {},
obs_time,
pseudoranges,
ref_id,
clock_steering_indicator,
external_clock_indicator,
smooth_int,
divergence_free,
more_messages);
EXPECT_EQ(expected_true, rtcm->check_CRC(MSM1));
std::string MSM1_bin = rtcm->binary_data_to_bin(MSM1);
unsigned int Nsat = 3;
unsigned int Nsig = 2;
unsigned int size_header = 14;
unsigned int size_crc = 24;
unsigned int size_msg_length = 10;
unsigned int upper_bound = 169 + Nsat * 10 + 43 * Nsig;
unsigned int data_size = MSM1_bin.length() - size_header - size_msg_length - size_crc;
EXPECT_EQ(expected_true, upper_bound >= data_size);
EXPECT_EQ(0, MSM1_bin.substr(0, size_header).compare("11010011000000"));
EXPECT_EQ(ref_id, rtcm->bin_to_uint(MSM1_bin.substr(size_header + size_msg_length + 12, 12)));
EXPECT_EQ(0, MSM1_bin.substr(size_header + size_msg_length + 169, Nsat * Nsig).compare("101101")); // check cell mask
double meters_to_miliseconds = SPEED_OF_LIGHT_M_S * 0.001;
unsigned int rough_range_1 = static_cast<unsigned int>(std::floor(std::round(gnss_synchro.Pseudorange_m / meters_to_miliseconds / TWO_N10)) + 0.5) & 0x3FFu;
unsigned int rough_range_2 = static_cast<unsigned int>(std::floor(std::round(gnss_synchro2.Pseudorange_m / meters_to_miliseconds / TWO_N10)) + 0.5) & 0x3FFu;
unsigned int rough_range_4 = static_cast<unsigned int>(std::floor(std::round(gnss_synchro3.Pseudorange_m / meters_to_miliseconds / TWO_N10)) + 0.5) & 0x3FFu;
unsigned int read_pseudorange_1 = rtcm->bin_to_uint(MSM1_bin.substr(size_header + size_msg_length + 169 + Nsat * Nsig, 10));
unsigned int read_pseudorange_2 = rtcm->bin_to_uint(MSM1_bin.substr(size_header + size_msg_length + 169 + Nsat * Nsig + 10, 10));
unsigned int read_pseudorange_4 = rtcm->bin_to_uint(MSM1_bin.substr(size_header + size_msg_length + 169 + Nsat * Nsig + 20, 10));
EXPECT_EQ(rough_range_1, read_pseudorange_1);
EXPECT_EQ(rough_range_2, read_pseudorange_2);
EXPECT_EQ(rough_range_4, read_pseudorange_4);
int psrng4_s = static_cast<int>(std::round((gnss_synchro3.Pseudorange_m - std::round(gnss_synchro3.Pseudorange_m / meters_to_miliseconds / TWO_N10) * meters_to_miliseconds * TWO_N10) / meters_to_miliseconds / TWO_N24));
int read_psrng4_s = rtcm->bin_to_int(MSM1_bin.substr(size_header + size_msg_length + 169 + (Nsat * Nsig) + 30 + 15 * 3, 15));
EXPECT_EQ(psrng4_s, read_psrng4_s);
std::map<int, Gnss_Synchro> pseudoranges2;
pseudoranges2.insert(std::pair<int, Gnss_Synchro>(1, gnss_synchro4));
pseudoranges2.insert(std::pair<int, Gnss_Synchro>(2, gnss_synchro3));
pseudoranges2.insert(std::pair<int, Gnss_Synchro>(3, gnss_synchro2));
pseudoranges2.insert(std::pair<int, Gnss_Synchro>(4, gnss_synchro));
std::string MSM1_2 = rtcm->print_MSM_1(gps_eph,
{}, {}, {},
obs_time,
pseudoranges2,
ref_id,
clock_steering_indicator,
external_clock_indicator,
smooth_int,
divergence_free,
more_messages);
std::string MSM1_bin2 = rtcm->binary_data_to_bin(MSM1_2);
int read_psrng4_s_2 = rtcm->bin_to_int(MSM1_bin2.substr(size_header + size_msg_length + 169 + (Nsat * Nsig) + 30 + 15 * 3, 15));
EXPECT_EQ(psrng4_s, read_psrng4_s_2);
}
TEST(RtcmTest, InstantiateServer)
{
auto rtcm = std::make_shared<Rtcm>();
rtcm->run_server();
std::string msg("Hello");
rtcm->send_message(msg);
std::string test3 = "ff";
std::string test3_bin = rtcm->hex_to_bin(test3);
EXPECT_EQ(0, test3_bin.compare("11111111"));
rtcm->stop_server();
std::string test6 = "0011";
std::string test6_hex = rtcm->bin_to_hex(test6);
EXPECT_EQ(0, test6_hex.compare("3"));
uint64_t expected1 = 42;
EXPECT_EQ(expected1, rtcm->bin_to_uint("00101010"));
rtcm->run_server();
std::string test4_bin = rtcm->hex_to_bin(test3);
std::string s = rtcm->bin_to_binary_data(test4_bin);
rtcm->send_message(s);
rtcm->stop_server();
EXPECT_EQ(0, test4_bin.compare("11111111"));
}
TEST(RtcmTest, InstantiateServerWithoutClosing)
{
auto rtcm = std::make_shared<Rtcm>();
rtcm->run_server();
std::string msg("Hello");
rtcm->send_message(msg);
std::string test3 = "ff";
std::string test3_bin = rtcm->hex_to_bin(test3);
EXPECT_EQ(0, test3_bin.compare("11111111"));
}