gnss-sdr/src/algorithms/PVT/libs/an_packet_printer.cc

360 lines
15 KiB
C++

/*!
* \file an_packet_printer.cc
* \brief Implementation of a class that prints PVT solutions in a serial device
* following a custom version of the Advanced Navigation Packet Protocol
* \author Carles Fernandez-Prades, 2021. cfernandez(at)cttc.es
* \author Miguel Angel Gomez Lopez, 2021. gomezlma(at)inta.es
*
*
* -----------------------------------------------------------------------------
*
* GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
* This file is part of GNSS-SDR.
*
* Copyright (C) 2010-2021 (see AUTHORS file for a list of contributors)
* SPDX-License-Identifier: GPL-3.0-or-later
*
* -----------------------------------------------------------------------------
*/
#include "an_packet_printer.h"
#include "rtklib_solver.h" // for Rtklib_Solver
#include <glog/logging.h> // for DLOG
#include <cmath> // for M_PI
#include <cstring> // for memcpy
#include <fcntl.h> // for fcntl
#include <iostream> // for std::cerr
#include <limits> // std::numeric_limits
#include <termios.h> // values for termios
#include <unistd.h> // for write(), read(), close()
An_Packet_Printer::An_Packet_Printer(const std::string& an_dump_devname)
{
d_an_devname = an_dump_devname;
d_an_dev_descriptor = init_serial(d_an_devname);
if (d_an_dev_descriptor != -1)
{
DLOG(INFO) << "AN Printer writing on " << d_an_devname;
}
}
An_Packet_Printer::~An_Packet_Printer()
{
try
{
close_serial();
}
catch (const std::exception& e)
{
std::cerr << e.what() << '\n';
}
}
bool An_Packet_Printer::print_packet(const Rtklib_Solver* const pvt_data, const std::map<int, Gnss_Synchro>& gnss_observables_map)
{
an_packet_t an_packet{};
sdr_gnss_packet_t sdr_gnss_packet{};
update_sdr_gnss_packet(&sdr_gnss_packet, pvt_data, gnss_observables_map);
encode_sdr_gnss_packet(&sdr_gnss_packet, &an_packet);
if (d_an_dev_descriptor != -1)
{
if (write(d_an_dev_descriptor, &an_packet, sizeof(an_packet)) == -1)
{
LOG(ERROR) << "Advanced Navigation printer cannot write on serial device " << d_an_devname;
return false;
}
}
return true;
}
void An_Packet_Printer::close_serial() const
{
if (d_an_dev_descriptor != -1)
{
close(d_an_dev_descriptor);
}
}
/*
* @brief update_sdr_gnss_packet
* @param sdr_gnss_packet_t* Pointer to a structure that contains
* the output information.
* @param NavData_t* pointer to input packet with all the information
* @reval None
*/
void An_Packet_Printer::update_sdr_gnss_packet(sdr_gnss_packet_t* _packet, const Rtklib_Solver* const pvt, const std::map<int, Gnss_Synchro>& gnss_observables_map) const
{
std::map<int, Gnss_Synchro>::const_iterator gnss_observables_iter;
uint8_t num_gps_sats = 0;
uint8_t num_gal_sats = 0;
uint32_t microseconds = 0;
int index = 0;
const int max_reported_sats = *(&_packet->sats + 1) - _packet->sats;
for (gnss_observables_iter = gnss_observables_map.cbegin();
gnss_observables_iter != gnss_observables_map.cend();
++gnss_observables_iter)
{
if (gnss_observables_iter->second.Flag_valid_pseudorange)
{
switch (gnss_observables_iter->second.System)
{
case 'G':
num_gps_sats++;
if (index < max_reported_sats)
{
_packet->sats[index].prn = static_cast<uint8_t>(gnss_observables_iter->second.PRN);
_packet->sats[index].snr = static_cast<uint8_t>(gnss_observables_iter->second.CN0_dB_hz);
int16_t doppler = 0;
double Carrier_Doppler_hz = gnss_observables_iter->second.Carrier_Doppler_hz;
if (Carrier_Doppler_hz > static_cast<double>(std::numeric_limits<int16_t>::max()))
{
doppler = std::numeric_limits<int16_t>::max();
}
else if (Carrier_Doppler_hz < static_cast<double>(std::numeric_limits<int16_t>::min()))
{
doppler = std::numeric_limits<int16_t>::min();
}
else
{
doppler = static_cast<int16_t>(Carrier_Doppler_hz);
}
_packet->sats[index].doppler = doppler;
microseconds = static_cast<uint32_t>(static_cast<double>(gnss_observables_iter->second.Tracking_sample_counter) / static_cast<double>(gnss_observables_iter->second.fs)) * 1e6;
index++;
}
break;
case 'E':
num_gal_sats++;
if (index < max_reported_sats)
{
_packet->sats[index].prn = static_cast<uint8_t>(gnss_observables_iter->second.PRN) + 100;
_packet->sats[index].snr = static_cast<uint8_t>(gnss_observables_iter->second.CN0_dB_hz);
int16_t doppler = 0;
double Carrier_Doppler_hz = gnss_observables_iter->second.Carrier_Doppler_hz;
if (Carrier_Doppler_hz > static_cast<double>(std::numeric_limits<int16_t>::max()))
{
doppler = std::numeric_limits<int16_t>::max();
}
else if (Carrier_Doppler_hz < static_cast<double>(std::numeric_limits<int16_t>::min()))
{
doppler = std::numeric_limits<int16_t>::min();
}
else
{
doppler = static_cast<int16_t>(Carrier_Doppler_hz);
}
_packet->sats[index].doppler = doppler;
microseconds = static_cast<uint32_t>(static_cast<double>(gnss_observables_iter->second.Tracking_sample_counter) / static_cast<double>(gnss_observables_iter->second.fs)) * 1e6;
index++;
}
break;
default:
break;
}
}
}
_packet->nsvfix = static_cast<uint8_t>(pvt->get_num_valid_observations());
_packet->gps_satellites = num_gps_sats;
_packet->galileo_satellites = num_gal_sats;
_packet->microseconds = microseconds;
_packet->latitude = static_cast<double>(pvt->get_latitude()) * (M_PI / 180.0);
_packet->longitude = static_cast<double>(pvt->get_longitude()) * (M_PI / 180.0);
_packet->height = static_cast<double>(pvt->get_height());
_packet->velocity[0] = static_cast<float>(pvt->get_rx_vel()[1]);
_packet->velocity[1] = static_cast<float>(pvt->get_rx_vel()[0]);
_packet->velocity[2] = static_cast<float>(-pvt->get_rx_vel()[2]);
uint16_t status = 0;
// Set 3D fix (bit 0 and 1) / Set Doppler velocity valid (bit 2) / Set Time valid (bit 3)
status = status & 0b00001111;
_packet->status = status;
}
/*
* @brief encode_sdr_gnss_packet
* @param sdr_gnss_packet_t* Pointer to a structure that contains the data.
* @param an_packet_t* pointer to output packet
* @reval None
*/
void An_Packet_Printer::encode_sdr_gnss_packet(sdr_gnss_packet_t* sdr_gnss_packet, an_packet_t* _packet) const
{
_packet->id = SDR_GNSS_PACKET_ID;
_packet->length = SDR_GNSS_PACKET_LENGTH;
if (_packet != nullptr)
{
uint8_t offset = 0;
LSB_bytes_to_array(reinterpret_cast<uint8_t*>(&sdr_gnss_packet->nsvfix), offset, _packet->data, sizeof(sdr_gnss_packet->nsvfix));
offset += sizeof(sdr_gnss_packet->nsvfix);
LSB_bytes_to_array(reinterpret_cast<uint8_t*>(&sdr_gnss_packet->gps_satellites), offset, _packet->data, sizeof(sdr_gnss_packet->gps_satellites));
offset += sizeof(sdr_gnss_packet->gps_satellites);
LSB_bytes_to_array(reinterpret_cast<uint8_t*>(&sdr_gnss_packet->galileo_satellites), offset, _packet->data, sizeof(sdr_gnss_packet->galileo_satellites));
offset += sizeof(sdr_gnss_packet->galileo_satellites);
LSB_bytes_to_array(reinterpret_cast<uint8_t*>(&sdr_gnss_packet->microseconds), offset, _packet->data, sizeof(sdr_gnss_packet->microseconds));
offset += sizeof(sdr_gnss_packet->microseconds);
LSB_bytes_to_array(reinterpret_cast<uint8_t*>(&sdr_gnss_packet->latitude), offset, _packet->data, sizeof(sdr_gnss_packet->latitude));
offset += sizeof(sdr_gnss_packet->latitude);
LSB_bytes_to_array(reinterpret_cast<uint8_t*>(&sdr_gnss_packet->longitude), offset, _packet->data, sizeof(sdr_gnss_packet->longitude));
offset += sizeof(sdr_gnss_packet->longitude);
LSB_bytes_to_array(reinterpret_cast<uint8_t*>(&sdr_gnss_packet->height), offset, _packet->data, sizeof(sdr_gnss_packet->height));
offset += sizeof(sdr_gnss_packet->height);
LSB_bytes_to_array(reinterpret_cast<uint8_t*>(&sdr_gnss_packet->velocity[0]), offset, _packet->data, sizeof(sdr_gnss_packet->velocity[0]));
offset += sizeof(sdr_gnss_packet->velocity[0]);
LSB_bytes_to_array(reinterpret_cast<uint8_t*>(&sdr_gnss_packet->velocity[1]), offset, _packet->data, sizeof(sdr_gnss_packet->velocity[1]));
offset += sizeof(sdr_gnss_packet->velocity[1]);
LSB_bytes_to_array(reinterpret_cast<uint8_t*>(&sdr_gnss_packet->velocity[2]), offset, _packet->data, sizeof(sdr_gnss_packet->velocity[2]));
offset += sizeof(sdr_gnss_packet->velocity[2]);
for (auto& sat : sdr_gnss_packet->sats)
{
LSB_bytes_to_array(reinterpret_cast<uint8_t*>(&sat.prn), offset, _packet->data, sizeof(sat.prn));
offset += sizeof(sat.prn);
LSB_bytes_to_array(reinterpret_cast<uint8_t*>(&sat.snr), offset, _packet->data, sizeof(sat.snr));
offset += sizeof(sat.snr);
LSB_bytes_to_array(reinterpret_cast<uint8_t*>(&sat.doppler), offset, _packet->data, sizeof(sat.doppler));
offset += sizeof(sat.doppler);
}
offset = static_cast<uint8_t>(SDR_GNSS_PACKET_LENGTH - sizeof(sdr_gnss_packet->status));
LSB_bytes_to_array(reinterpret_cast<uint8_t*>(&sdr_gnss_packet->status), offset, _packet->data, sizeof(sdr_gnss_packet->status));
}
an_packet_encode(_packet);
}
/*
* Function to encode an an_packet
*/
void An_Packet_Printer::an_packet_encode(an_packet_t* an_packet) const
{
uint16_t crc;
an_packet->header[1] = an_packet->id;
an_packet->header[2] = an_packet->length;
crc = calculate_crc16(an_packet->data, an_packet->length);
memcpy(&an_packet->header[3], &crc, sizeof(uint16_t));
an_packet->header[0] = calculate_header_lrc(&an_packet->header[1]);
}
/*
* Function to calculate a 4 byte LRC
*/
uint8_t An_Packet_Printer::calculate_header_lrc(const uint8_t* data) const
{
return ((data[0] + data[1] + data[2] + data[3]) ^ 0xFF) + 1;
}
void An_Packet_Printer::LSB_bytes_to_array(void* _in, int offset, uint8_t* _out, uint8_t var_size) const
{
switch (var_size)
{
case 1:
{
auto* tmp = reinterpret_cast<uint8_t*>(_in);
for (int i = 0; i < var_size; i++)
{
_out[offset + i] = (*tmp >> 8 * i) & 0xFF;
}
break;
}
case 2:
{
auto* tmp = reinterpret_cast<uint16_t*>(_in);
for (int i = 0; i < var_size; i++)
{
_out[offset + i] = (*tmp >> 8 * i) & 0xFF;
}
break;
}
case 4:
{
auto* tmp = reinterpret_cast<uint32_t*>(_in);
for (int i = 0; i < var_size; i++)
{
_out[offset + i] = (*tmp >> 8 * i) & 0xFF;
}
break;
}
case 8:
{
auto* tmp = reinterpret_cast<uint64_t*>(_in);
for (int i = 0; i < var_size; i++)
{
_out[offset + i] = (*tmp >> 8 * i) & 0xFF;
}
break;
}
default:
break;
}
}
/*
* Function to calculate the CRC16 of data
* CRC16-CCITT
* Initial value = 0xFFFF
* Polynomial = x^16 + x^12 + x^5 + x^0
*/
uint16_t An_Packet_Printer::calculate_crc16(const void* data, uint16_t length) const
{
const auto* bytes = reinterpret_cast<const uint8_t*>(data);
uint16_t crc = 0xFFFF;
for (uint16_t i = 0; i < length; i++)
{
crc = static_cast<uint16_t>((crc << 8) ^ d_crc16_table[(crc >> 8) ^ bytes[i]]);
}
return crc;
}
/*
* Opens the serial device and sets the default baud rate for a transmission (115200,8,N,1)
*/
int An_Packet_Printer::init_serial(const std::string& serial_device)
{
int fd = 0;
// clang-format off
struct termios options{};
// clang-format on
const int64_t BAUD = B115200;
const int64_t DATABITS = CS8;
const int64_t STOPBITS = 0;
const int64_t PARITYON = 0;
const int64_t PARITY = 0;
fd = open(serial_device.c_str(), O_RDWR | O_NOCTTY | O_NDELAY | O_CLOEXEC);
if (fd == -1)
{
return fd; // failed to open TTY port
}
if (fcntl(fd, F_SETFL, 0) == -1)
{
LOG(INFO) << "Error enabling direct I/O"; // clear all flags on descriptor, enable direct I/O
}
tcgetattr(fd, &options); // read serial port options
options.c_cflag = BAUD | DATABITS | STOPBITS | PARITYON | PARITY | CLOCAL | CREAD;
// enable receiver, set 8 bit data, ignore control lines
// options.c_cflag |= (CLOCAL | CREAD | CS8);
options.c_iflag = IGNPAR;
// set the new port options
tcsetattr(fd, TCSANOW, &options);
return fd;
}