gnss-sdr/src/algorithms/tracking/libs/fpga_multicorrelator.cc

478 lines
17 KiB
C++

/*!
* \file fpga_multicorrelator_8sc.cc
* \brief High optimized FPGA vector correlator class
* \authors <ul>
* <li> Marc Majoral, 2019. mmajoral(at)cttc.cat
* <li> Javier Arribas, 2015. jarribas(at)cttc.es
* </ul>
*
* Class that controls and executes a high optimized vector correlator
* class in the FPGA
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "fpga_multicorrelator.h"
#include <glog/logging.h>
#include <cassert>
#include <cerrno>
#include <cmath>
#include <csignal>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <fcntl.h>
#include <new>
#include <string>
#include <sys/mman.h>
#include <sys/stat.h>
#include <unistd.h>
#include <utility>
// FPGA register access constants
#define PAGE_SIZE 0x10000
#define MAX_LENGTH_DEVICEIO_NAME 50
#define CODE_RESAMPLER_NUM_BITS_PRECISION 20
#define CODE_PHASE_STEP_CHIPS_NUM_NBITS CODE_RESAMPLER_NUM_BITS_PRECISION
#define pwrtwo(x) (1 << (x))
#define MAX_CODE_RESAMPLER_COUNTER pwrtwo(CODE_PHASE_STEP_CHIPS_NUM_NBITS) // 2^CODE_PHASE_STEP_CHIPS_NUM_NBITS
#define PHASE_CARR_NBITS 32
#define PHASE_CARR_NBITS_INT 1
#define PHASE_CARR_NBITS_FRAC PHASE_CARR_NBITS - PHASE_CARR_NBITS_INT
#define LOCAL_CODE_FPGA_CORRELATOR_SELECT_COUNT 0x20000000
#define LOCAL_CODE_FPGA_CLEAR_ADDRESS_COUNTER 0x10000000
#define LOCAL_CODE_FPGA_ENABLE_WRITE_MEMORY 0x0C000000
#define TEST_REGISTER_TRACK_WRITEVAL 0x55AA
uint64_t fpga_multicorrelator_8sc::read_sample_counter()
{
uint64_t sample_counter_tmp, sample_counter_msw_tmp;
sample_counter_tmp = d_map_base[SAMPLE_COUNTER_REG_ADDR_LSW];
sample_counter_msw_tmp = d_map_base[SAMPLE_COUNTER_REG_ADDR_MSW];
sample_counter_msw_tmp = sample_counter_msw_tmp << 32;
sample_counter_tmp = sample_counter_tmp + sample_counter_msw_tmp; // 2^32
return sample_counter_tmp;
}
void fpga_multicorrelator_8sc::set_initial_sample(uint64_t samples_offset)
{
d_initial_sample_counter = samples_offset;
d_map_base[INITIAL_COUNTER_VALUE_REG_ADDR_LSW] = (d_initial_sample_counter & 0xFFFFFFFF);
d_map_base[INITIAL_COUNTER_VALUE_REG_ADDR_MSW] = (d_initial_sample_counter >> 32) & 0xFFFFFFFF;
}
void fpga_multicorrelator_8sc::set_local_code_and_taps(float *shifts_chips, float *prompt_data_shift, int32_t PRN)
{
d_shifts_chips = shifts_chips;
d_prompt_data_shift = prompt_data_shift;
fpga_multicorrelator_8sc::fpga_configure_tracking_gps_local_code(PRN);
}
void fpga_multicorrelator_8sc::set_output_vectors(gr_complex *corr_out, gr_complex *Prompt_Data)
{
d_corr_out = corr_out;
d_Prompt_Data = Prompt_Data;
}
void fpga_multicorrelator_8sc::update_local_code(float rem_code_phase_chips)
{
d_rem_code_phase_chips = rem_code_phase_chips;
fpga_multicorrelator_8sc::fpga_compute_code_shift_parameters();
fpga_multicorrelator_8sc::fpga_configure_code_parameters_in_fpga();
}
void fpga_multicorrelator_8sc::Carrier_wipeoff_multicorrelator_resampler(
float rem_carrier_phase_in_rad, float phase_step_rad,
float carrier_phase_rate_step_rad,
float rem_code_phase_chips, float code_phase_step_chips,
float code_phase_rate_step_chips,
int32_t signal_length_samples)
{
update_local_code(rem_code_phase_chips);
d_rem_carrier_phase_in_rad = rem_carrier_phase_in_rad;
d_code_phase_step_chips = code_phase_step_chips;
d_phase_step_rad = phase_step_rad;
d_correlator_length_samples = signal_length_samples;
fpga_multicorrelator_8sc::fpga_compute_signal_parameters_in_fpga();
fpga_multicorrelator_8sc::fpga_configure_signal_parameters_in_fpga();
fpga_multicorrelator_8sc::fpga_launch_multicorrelator_fpga();
int32_t irq_count;
ssize_t nb;
nb = read(d_device_descriptor, &irq_count, sizeof(irq_count));
if (nb != sizeof(irq_count))
{
std::cout << "Tracking_module Read failed to retrieve 4 bytes!" << std::endl;
std::cout << "Tracking_module Interrupt number " << irq_count << std::endl;
}
fpga_multicorrelator_8sc::read_tracking_gps_results();
}
fpga_multicorrelator_8sc::fpga_multicorrelator_8sc(int32_t n_correlators,
std::string device_name, uint32_t device_base, int32_t *ca_codes, int32_t *data_codes, uint32_t code_length_chips, bool track_pilot,
uint32_t multicorr_type, uint32_t code_samples_per_chip)
{
d_n_correlators = n_correlators;
d_device_name = std::move(device_name);
d_device_base = device_base;
d_track_pilot = track_pilot;
d_device_descriptor = 0;
d_map_base = nullptr;
// instantiate variable length vectors
if (d_track_pilot)
{
d_initial_index = static_cast<uint32_t *>(volk_gnsssdr_malloc(
(n_correlators + 1) * sizeof(uint32_t), volk_gnsssdr_get_alignment()));
d_initial_interp_counter = static_cast<uint32_t *>(volk_gnsssdr_malloc(
(n_correlators + 1) * sizeof(uint32_t), volk_gnsssdr_get_alignment()));
}
else
{
d_initial_index = static_cast<uint32_t *>(volk_gnsssdr_malloc(
n_correlators * sizeof(uint32_t), volk_gnsssdr_get_alignment()));
d_initial_interp_counter = static_cast<uint32_t *>(volk_gnsssdr_malloc(
n_correlators * sizeof(uint32_t), volk_gnsssdr_get_alignment()));
}
d_shifts_chips = nullptr;
d_prompt_data_shift = nullptr;
d_corr_out = nullptr;
d_code_length_chips = 0;
d_rem_code_phase_chips = 0;
d_code_phase_step_chips = 0;
d_rem_carrier_phase_in_rad = 0;
d_phase_step_rad = 0;
d_rem_carr_phase_rad_int = 0;
d_phase_step_rad_int = 0;
d_initial_sample_counter = 0;
d_channel = 0;
d_correlator_length_samples = 0,
d_code_length_chips = code_length_chips;
d_ca_codes = ca_codes;
d_data_codes = data_codes;
d_multicorr_type = multicorr_type;
d_code_samples_per_chip = code_samples_per_chip;
DLOG(INFO) << "TRACKING FPGA CLASS CREATED";
}
fpga_multicorrelator_8sc::~fpga_multicorrelator_8sc()
{
close_device();
}
bool fpga_multicorrelator_8sc::free()
{
// unlock the channel
fpga_multicorrelator_8sc::unlock_channel();
// free the FPGA dynamically created variables
if (d_initial_index != nullptr)
{
volk_gnsssdr_free(d_initial_index);
d_initial_index = nullptr;
}
if (d_initial_interp_counter != nullptr)
{
volk_gnsssdr_free(d_initial_interp_counter);
d_initial_interp_counter = nullptr;
}
return true;
}
void fpga_multicorrelator_8sc::set_channel(uint32_t channel)
{
char device_io_name[MAX_LENGTH_DEVICEIO_NAME]; // driver io name
d_channel = channel;
// open the device corresponding to the assigned channel
std::string mergedname;
std::stringstream devicebasetemp;
int32_t numdevice = d_device_base + d_channel;
devicebasetemp << numdevice;
mergedname = d_device_name + devicebasetemp.str();
strcpy(device_io_name, mergedname.c_str());
std::cout << "trk device_io_name = " << device_io_name << std::endl;
if ((d_device_descriptor = open(device_io_name, O_RDWR | O_SYNC)) == -1)
{
LOG(WARNING) << "Cannot open deviceio" << device_io_name;
std::cout << "Cannot open deviceio" << device_io_name << std::endl;
}
d_map_base = reinterpret_cast<volatile uint32_t *>(mmap(nullptr, PAGE_SIZE,
PROT_READ | PROT_WRITE, MAP_SHARED, d_device_descriptor, 0));
if (d_map_base == reinterpret_cast<void *>(-1))
{
LOG(WARNING) << "Cannot map the FPGA tracking module "
<< d_channel << "into user memory";
std::cout << "Cannot map deviceio" << device_io_name << std::endl;
}
// sanity check : check test register
uint32_t writeval = TEST_REGISTER_TRACK_WRITEVAL;
uint32_t readval;
readval = fpga_multicorrelator_8sc::fpga_acquisition_test_register(writeval);
if (writeval != readval)
{
LOG(WARNING) << "Test register sanity check failed";
std::cout << "tracking test register sanity check failed" << std::endl;
}
else
{
LOG(INFO) << "Test register sanity check success !";
}
}
uint32_t fpga_multicorrelator_8sc::fpga_acquisition_test_register(
uint32_t writeval)
{
uint32_t readval = 0;
// write value to test register
d_map_base[TEST_REG_ADDR] = writeval;
// read value from test register
readval = d_map_base[TEST_REG_ADDR];
// return read value
return readval;
}
void fpga_multicorrelator_8sc::fpga_configure_tracking_gps_local_code(int32_t PRN)
{
uint32_t k;
uint32_t code_chip;
uint32_t select_pilot_corelator = LOCAL_CODE_FPGA_CORRELATOR_SELECT_COUNT;
d_map_base[PROG_MEMS_ADDR] = LOCAL_CODE_FPGA_CLEAR_ADDRESS_COUNTER;
for (k = 0; k < d_code_length_chips * d_code_samples_per_chip; k++)
{
if (d_ca_codes[((int32_t(d_code_length_chips)) * d_code_samples_per_chip * (PRN - 1)) + k] == 1)
{
code_chip = 1;
}
else
{
code_chip = 0;
}
// copy the local code to the FPGA memory one by one
d_map_base[PROG_MEMS_ADDR] = LOCAL_CODE_FPGA_ENABLE_WRITE_MEMORY | code_chip; // | select_fpga_correlator;
}
if (d_track_pilot)
{
d_map_base[PROG_MEMS_ADDR] = LOCAL_CODE_FPGA_CLEAR_ADDRESS_COUNTER;
for (k = 0; k < d_code_length_chips * d_code_samples_per_chip; k++)
{
if (d_data_codes[((int32_t(d_code_length_chips)) * d_code_samples_per_chip * (PRN - 1)) + k] == 1)
{
code_chip = 1;
}
else
{
code_chip = 0;
}
d_map_base[PROG_MEMS_ADDR] = LOCAL_CODE_FPGA_ENABLE_WRITE_MEMORY | code_chip | select_pilot_corelator;
}
}
}
void fpga_multicorrelator_8sc::fpga_compute_code_shift_parameters(void)
{
float temp_calculation;
int32_t i;
for (i = 0; i < d_n_correlators; i++)
{
temp_calculation = floor(
d_shifts_chips[i] - d_rem_code_phase_chips);
if (temp_calculation < 0)
{
temp_calculation = temp_calculation + (d_code_length_chips * d_code_samples_per_chip); // % operator does not work as in Matlab with negative numbers
}
d_initial_index[i] = static_cast<uint32_t>((static_cast<int32_t>(temp_calculation)) % (d_code_length_chips * d_code_samples_per_chip));
temp_calculation = fmod(d_shifts_chips[i] - d_rem_code_phase_chips,
1.0);
if (temp_calculation < 0)
{
temp_calculation = temp_calculation + 1.0; // fmod operator does not work as in Matlab with negative numbers
}
d_initial_interp_counter[i] = static_cast<uint32_t>(floor(MAX_CODE_RESAMPLER_COUNTER * temp_calculation));
}
if (d_track_pilot)
{
temp_calculation = floor(
d_prompt_data_shift[0] - d_rem_code_phase_chips);
if (temp_calculation < 0)
{
temp_calculation = temp_calculation + (d_code_length_chips * d_code_samples_per_chip); // % operator does not work as in Matlab with negative numbers
}
d_initial_index[d_n_correlators] = static_cast<uint32_t>((static_cast<int32_t>(temp_calculation)) % (d_code_length_chips * d_code_samples_per_chip));
temp_calculation = fmod(d_prompt_data_shift[0] - d_rem_code_phase_chips,
1.0);
if (temp_calculation < 0)
{
temp_calculation = temp_calculation + 1.0; // fmod operator does not work as in Matlab with negative numbers
}
d_initial_interp_counter[d_n_correlators] = static_cast<uint32_t>(floor(MAX_CODE_RESAMPLER_COUNTER * temp_calculation));
}
}
void fpga_multicorrelator_8sc::fpga_configure_code_parameters_in_fpga(void)
{
int32_t i;
for (i = 0; i < d_n_correlators; i++)
{
d_map_base[INITIAL_INDEX_REG_BASE_ADDR + i] = d_initial_index[i];
d_map_base[INITIAL_INTERP_COUNTER_REG_BASE_ADDR + i] = d_initial_interp_counter[i];
}
if (d_track_pilot)
{
d_map_base[INITIAL_INDEX_REG_BASE_ADDR + d_n_correlators] = d_initial_index[d_n_correlators];
d_map_base[INITIAL_INTERP_COUNTER_REG_BASE_ADDR + d_n_correlators] = d_initial_interp_counter[d_n_correlators];
}
d_map_base[CODE_LENGTH_MINUS_1_REG_ADDR] = (d_code_length_chips * d_code_samples_per_chip) - 1; // number of samples - 1
}
void fpga_multicorrelator_8sc::fpga_compute_signal_parameters_in_fpga(void)
{
float d_rem_carrier_phase_in_rad_temp;
d_code_phase_step_chips_num = static_cast<uint32_t>(roundf(MAX_CODE_RESAMPLER_COUNTER * d_code_phase_step_chips));
if (d_code_phase_step_chips > 1.0)
{
std::cout << "Warning : d_code_phase_step_chips = " << d_code_phase_step_chips << " cannot be bigger than one" << std::endl;
}
if (d_rem_carrier_phase_in_rad > M_PI)
{
d_rem_carrier_phase_in_rad_temp = -2 * M_PI + d_rem_carrier_phase_in_rad;
}
else if (d_rem_carrier_phase_in_rad < -M_PI)
{
d_rem_carrier_phase_in_rad_temp = 2 * M_PI + d_rem_carrier_phase_in_rad;
}
else
{
d_rem_carrier_phase_in_rad_temp = d_rem_carrier_phase_in_rad;
}
d_rem_carr_phase_rad_int = static_cast<int32_t>(roundf(
(fabs(d_rem_carrier_phase_in_rad_temp) / M_PI) * pow(2, PHASE_CARR_NBITS_FRAC)));
if (d_rem_carrier_phase_in_rad_temp < 0)
{
d_rem_carr_phase_rad_int = -d_rem_carr_phase_rad_int;
}
d_phase_step_rad_int = static_cast<int32_t>(roundf(
(fabs(d_phase_step_rad) / M_PI) * pow(2, PHASE_CARR_NBITS_FRAC))); // the FPGA accepts a range for the phase step between -pi and +pi
if (d_phase_step_rad < 0)
{
d_phase_step_rad_int = -d_phase_step_rad_int;
}
}
void fpga_multicorrelator_8sc::fpga_configure_signal_parameters_in_fpga(void)
{
d_map_base[CODE_PHASE_STEP_CHIPS_NUM_REG_ADDR] = d_code_phase_step_chips_num;
d_map_base[NSAMPLES_MINUS_1_REG_ADDR] = d_correlator_length_samples - 1;
d_map_base[REM_CARR_PHASE_RAD_REG_ADDR] = d_rem_carr_phase_rad_int;
d_map_base[PHASE_STEP_RAD_REG_ADDR] = d_phase_step_rad_int;
}
void fpga_multicorrelator_8sc::fpga_launch_multicorrelator_fpga(void)
{
// enable interrupts
int32_t reenable = 1;
write(d_device_descriptor, reinterpret_cast<void *>(&reenable), sizeof(int32_t));
// writing 1 to reg 14 launches the tracking
d_map_base[START_FLAG_ADDR] = 1;
}
void fpga_multicorrelator_8sc::read_tracking_gps_results(void)
{
int32_t readval_real;
int32_t readval_imag;
int32_t k;
for (k = 0; k < d_n_correlators; k++)
{
readval_real = d_map_base[RESULT_REG_REAL_BASE_ADDR + k];
readval_imag = d_map_base[RESULT_REG_IMAG_BASE_ADDR + k];
d_corr_out[k] = gr_complex(readval_real, readval_imag);
}
if (d_track_pilot)
{
readval_real = d_map_base[RESULT_REG_REAL_BASE_ADDR + d_n_correlators];
readval_imag = d_map_base[RESULT_REG_IMAG_BASE_ADDR + d_n_correlators];
d_Prompt_Data[0] = gr_complex(readval_real, readval_imag);
}
}
void fpga_multicorrelator_8sc::unlock_channel(void)
{
// unlock the channel to let the next samples go through
d_map_base[DROP_SAMPLES_REG_ADDR] = 1; // unlock the channel
d_map_base[STOP_TRACKING_REG_ADDR] = 1; // set the tracking module back to idle
}
void fpga_multicorrelator_8sc::close_device()
{
auto *aux = const_cast<uint32_t *>(d_map_base);
if (munmap(static_cast<void *>(aux), PAGE_SIZE) == -1)
{
std::cout << "Failed to unmap memory uio" << std::endl;
}
close(d_device_descriptor);
}
void fpga_multicorrelator_8sc::lock_channel(void)
{
// lock the channel for processing
d_map_base[DROP_SAMPLES_REG_ADDR] = 0; // lock the channel
}