mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2024-11-18 15:54:59 +00:00
bc62d8d5be
git-svn-id: https://svn.code.sf.net/p/gnss-sdr/code/trunk@120 64b25241-fba3-4117-9849-534c7e92360d
104 lines
3.5 KiB
C++
104 lines
3.5 KiB
C++
/*!
|
|
* \file tracking_discriminators.cc
|
|
* \brief Implementation of a library with a set of code tracking
|
|
* and carrier tracking discriminators that is used by the tracking algorithms.
|
|
* \author Javier Arribas, 2011. jarribas(at)cttc.es
|
|
*
|
|
*
|
|
* -------------------------------------------------------------------------
|
|
*
|
|
* Copyright (C) 2010-2011 (see AUTHORS file for a list of contributors)
|
|
*
|
|
* GNSS-SDR is a software defined Global Navigation
|
|
* Satellite Systems receiver
|
|
*
|
|
* This file is part of GNSS-SDR.
|
|
*
|
|
* GNSS-SDR is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* at your option) any later version.
|
|
*
|
|
* GNSS-SDR is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* -------------------------------------------------------------------------
|
|
*/
|
|
|
|
#include "tracking_discriminators.h"
|
|
#include <math.h>
|
|
|
|
// All the outputs are in RADIANS
|
|
/*
|
|
* FLL four quadrant arctan discriminator:
|
|
* \f{equation}
|
|
* \frac{\phi_2-\phi_1}{t_2-t1}=\frac{ATAN2(cross,dot)}{t_1-t_2},
|
|
* \f}
|
|
* where \f$cross=I_{PS1}Q_{PS2}-I_{PS2}Q_{PS1}\f$ and \f$dot=I_{PS1}I_{PS2}+Q_{PS1}Q_{PS2}\f$,
|
|
* \f$I_{PS1},Q_{PS1}\f$ are the inphase and quadrature prompt correlator outputs respectively at sample time \f$t_1\f$, and
|
|
* \f$I_{PS2},Q_{PS2}\f$ are the inphase and quadrature prompt correlator outputs respectively at sample time \f$t_2\f$. The output is in [radians/second].
|
|
*/
|
|
|
|
float fll_four_quadrant_atan(gr_complex prompt_s1, gr_complex prompt_s2,float t1, float t2)
|
|
{
|
|
float cross,dot;
|
|
dot = prompt_s1.imag()*prompt_s2.imag() + prompt_s1.real()*prompt_s2.real();
|
|
cross = prompt_s1.imag()*prompt_s2.real() - prompt_s2.imag()*prompt_s1.real();
|
|
return atan2(cross, dot) / (t2-t1);
|
|
}
|
|
|
|
|
|
/*
|
|
* PLL four quadrant arctan discriminator:
|
|
* \f{equation}
|
|
* \phi=ATAN2(Q_{PS},I_{PS}),
|
|
* \f}
|
|
* where \f$I_{PS1},Q_{PS1}\f$ are the inphase and quadrature prompt correlator outputs respectively. The output is in [radians].
|
|
*/
|
|
float pll_four_quadrant_atan(gr_complex prompt_s1)
|
|
{
|
|
return atan2(prompt_s1.real(), prompt_s1.imag());
|
|
}
|
|
|
|
|
|
/*
|
|
* PLL Costas loop two quadrant arctan discriminator:
|
|
* \f{equation}
|
|
* \phi=ATAN\left(\frac{Q_{PS}}{I_{PS}}\right),
|
|
* \f}
|
|
* where \f$I_{PS1},Q_{PS1}\f$ are the inphase and quadrature prompt correlator outputs respectively. The output is in [radians].
|
|
*/
|
|
float pll_cloop_two_quadrant_atan(gr_complex prompt_s1)
|
|
{
|
|
if (prompt_s1.imag() != 0.0)
|
|
{
|
|
return atan(prompt_s1.real() / prompt_s1.imag());
|
|
}
|
|
else
|
|
{
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* DLL Noncoherent Early minus Late envelope normalized discriminator:
|
|
* \f{equation}
|
|
* error=\frac{E-L}{E+L},
|
|
* \f}
|
|
* where \f$E=\sqrt{I_{ES}^2,Q_{ES}^2}\f$ is the Early correlator output absolute value and
|
|
* \f$L=\sqrt{I_{LS}^2,Q_{LS}^2}\f$ is the Late correlator output absolute value. The output is in [chips].
|
|
*/
|
|
float dll_nc_e_minus_l_normalized(gr_complex early_s1, gr_complex late_s1)
|
|
{
|
|
float P_early, P_late;
|
|
P_early = std::abs(early_s1);
|
|
P_late = std::abs(late_s1);
|
|
return (P_early - P_late) / ((P_early + P_late));
|
|
}
|